
pyseer Documentation
Release 1.3.10

John Lees and Marco Galardini

Nov 21, 2023

CONTENTS:

1 Citations 3
1.1 Installation . 3
1.2 Option reference . 5
1.3 Best practices . 7
1.4 Usage . 8
1.5 GWAS tutorial . 21
1.6 Prediction tutorial . 34
1.7 Multiprocessing . 42
1.8 Reference documentation . 42

2 Index: 57

Python Module Index 59

Index 61

i

ii

pyseer Documentation, Release 1.3.10

pyseer was first written a python reimplementation of seer, which was written in C++. pyseer uses linear models
with fixed or mixed effects to estimate the effect of genetic variation in a bacterial population on a phenotype of interest,
while accounting for potentially very strong confounding population structure. This allows for genome-wide association
studies (GWAS) to be performed in clonal organisms such as bacteria and viruses.

The original version of seer used sequence elements (k-mers) to represent variation across the pan-genome. pyseer
also allows variants stored in VCF files (e.g. SNPs and INDELs mapped against a reference genome) or Rtab files (e.g.
from roary or piggy to be used too). There are also a greater range of association models available, and tools to help
with processing the output.

Testing shows that results (p-values) should be the same as the original seer, with a runtime that is roughly twice as
long as the optimised C++ code.

We have also extended pyseer to fit association models to the whole genome, which also allows the use of machine
learning to predict traits in new samples.

CONTENTS: 1

https://github.com/johnlees/seer
https://sanger-pathogens.github.io/Roary/
https://github.com/harry-thorpe/piggy

pyseer Documentation, Release 1.3.10

2 CONTENTS:

CHAPTER

ONE

CITATIONS

If you find pyseer useful, please cite:

Lees, John A., Galardini, M., et al. pyseer: a comprehensive tool for microbial pangenome-wide association studies.
Bioinformatics 34:4310–4312 (2018). doi:10.1093/bioinformatics/bty539.

If you use unitigs (through unitig-counter) please cite:

Jaillard M., Lima L. et al. A fast and agnostic method for bacterial genome-wide association studies: Bridging the gap
between k-mers and genetic events. PLOS Genetics. 14, e1007758 (2018). doi:10.1371/journal.pgen.1007758.

The whole genome/predictive models:

Lees, John A., Mai, T. T., et al. Improved inference and prediction of bacterial genotype-phenotype associations using
interpretable pangenome-spanning regressions. (2020) Preprint: https://doi.org/10.1101/852426

1.1 Installation

The easiest way to install pyseer and its dependencies is through conda:

conda install pyseer

If you need conda, download miniconda and add the necessary channels:

conda config --add channels defaults
conda config --add channels bioconda
conda config --add channels conda-forge

pyseer can also be installed through pip:

python -m pip install pyseer

If you want multithreading make sure that you are using a version 3 python interpreter:

python3 -m pip install pyseer

3

https://github.com/johnlees/unitig-counter
https://doi.org/10.1101/852426
https://conda.io/miniconda.html

pyseer Documentation, Release 1.3.10

1.1.1 Prerequisites

These modules are installed through the pip command above, but if you have cloned the repository you will need to
install the depdencies yourself.

We used the following versions, though higher should also work:

• python 3+ (3.5.3)

• numpy (1.13.3)

• scipy (1.0.0)

• pandas (0.21.0)

• scikit-learn (0.19.1)

• statsmodels (0.8.0)

• pysam (0.13)

• glmnet_py (commit 946b65c)

• matplotlib (2.1.0) – for scree plots

• DendroPy (4.3.0) – for phylogeny distances

• pybedtools (0.7.10) – for annotating k-mers

• bedtools (2.27.0) – for annotating k-mers

• bedops (2.4.9) – for annotating k-mers

1.1.2 Test installation

Run unit tests:

pytest -v tests

Test functions and output:

cd tests/ && bash run_test.sh && cd ../

1.1.3 Other software

To count k-mers, you may find fsm-lite or the original seer package useful. These can easily be installed with conda,
set up as above:

conda install fsm-lite
conda install seer

Packages to count unitigs and help with their interpretation are also available on bioconda:

conda install unitig-counter unitig-caller

4 Chapter 1. Citations

https://github.com/nvalimak/fsm-lite
https://doi.org/10.1371/journal.pgen.1007758

pyseer Documentation, Release 1.3.10

1.2 Option reference

Usage:

usage: pyseer [-h] --phenotypes PHENOTYPES
[--phenotype-column PHENOTYPE_COLUMN]
(--kmers KMERS | --vcf VCF | --pres PRES) [--burden BURDEN]
[--distances DISTANCES | --load-m LOAD_M]
[--similarity SIMILARITY | --load-lmm LOAD_LMM]
[--save-m SAVE_M] [--save-lmm SAVE_LMM]
[--mds {classic,metric,non-metric}]
[--max-dimensions MAX_DIMENSIONS] [--no-distances]
[--continuous] [--lmm] [--wg {enet,rf,blup}] [--lineage]
[--lineage-clusters LINEAGE_CLUSTERS]
[--lineage-file LINEAGE_FILE] [--sequence-reweighting]
[--save-vars SAVE_VARS] [--load-vars LOAD_VARS]
[--save-model SAVE_MODEL] [--alpha ALPHA] [--n-folds N_FOLDS]
[--min-af MIN_AF] [--max-af MAX_AF] [--max-missing MAX_MISSING]
[--filter-pvalue FILTER_PVALUE] [--lrt-pvalue LRT_PVALUE]
[--cor-filter COR_FILTER] [--covariates COVARIATES]
[--use-covariates [USE_COVARIATES ...]] [--print-samples]
[--print-filtered] [--output-patterns OUTPUT_PATTERNS]
[--uncompressed] [--cpu CPU] [--block_size BLOCK_SIZE]
[--version]

SEER (doi: 10.1038/ncomms12797), reimplemented in python

optional arguments:
-h, --help show this help message and exit

Phenotype:
--phenotypes PHENOTYPES

Phenotypes file (whitespace separated)
--phenotype-column PHENOTYPE_COLUMN

Phenotype file column to use [Default: last column]

Variants:
--kmers KMERS Kmers file
--vcf VCF VCF file. Will filter any non 'PASS' sites
--pres PRES Presence/absence .Rtab matrix as produced by roary and

piggy
--burden BURDEN VCF regions to group variants by for burden testing

(requires --vcf). Requires vcf to be indexed

Distances:
--distances DISTANCES

Strains distance square matrix (fixed or lineage
effects)

--load-m LOAD_M Load an existing matrix decomposition
--similarity SIMILARITY

Strains similarity square matrix (for --lmm)
--load-lmm LOAD_LMM Load an existing lmm cache
--save-m SAVE_M Prefix for saving matrix decomposition

(continues on next page)

1.2. Option reference 5

pyseer Documentation, Release 1.3.10

(continued from previous page)

--save-lmm SAVE_LMM Prefix for saving LMM cache
--mds {classic,metric,non-metric}

Type of multidimensional scaling [Default: classic]
--max-dimensions MAX_DIMENSIONS

Maximum number of dimensions to consider after MDS
[Default: 10]

--no-distances Allow run without a distance matrix

Association options:
--continuous Force continuous phenotype [Default: binary auto-

detect]
--lmm Use random instead of fixed effects to correct for

population structure. Requires a similarity matrix
--wg {enet,rf,blup} Use a whole genome model for association and

prediction. Population structure correction is
implicit.

--lineage Report lineage effects
--lineage-clusters LINEAGE_CLUSTERS

Custom clusters to use as lineages [Default: MDS
components]

--lineage-file LINEAGE_FILE
File to write lineage association to [Default:
lineage_effects.txt]

Whole genome options:
--sequence-reweighting

Use --lineage-clusters to downweight sequences.
--save-vars SAVE_VARS

Prefix for saving variants
--load-vars LOAD_VARS

Prefix for loading variants
--save-model SAVE_MODEL

Prefix for saving model
--alpha ALPHA Set the mixing between l1 and l2 penalties [Default:

0.0069]
--n-folds N_FOLDS Number of folds cross-validation to perform [Default:

10]

Filtering options:
--min-af MIN_AF Minimum AF [Default: 0.01]
--max-af MAX_AF Maximum AF [Default: 0.99]
--max-missing MAX_MISSING

Maximum missing (vcf/Rtab) [Default: 0.05]
--filter-pvalue FILTER_PVALUE

Prefiltering t-test pvalue threshold [Default: 1]
--lrt-pvalue LRT_PVALUE

Likelihood ratio test pvalue threshold [Default: 1]
--cor-filter COR_FILTER

Correlation filter for elastic net (phenotype/variant
correlation quantile at which to start keeping
variants) [Default: 0.25]

(continues on next page)

6 Chapter 1. Citations

pyseer Documentation, Release 1.3.10

(continued from previous page)

Covariates:
--covariates COVARIATES

User-defined covariates file (tab-delimited, with
header, first column contains sample names)

--use-covariates [USE_COVARIATES ...]
Covariates to use. Format is "2 3q 4" (q for
quantitative) [Default: load covariates but don't use
them]

Other:
--print-samples Print sample lists [Default: hide samples]
--print-filtered Print filtered variants (i.e. fitting errors) (does

not apply if --wg is used) [Default: hide them]
--output-patterns OUTPUT_PATTERNS

File to print patterns to, useful for finding pvalue
threshold (not used with --wg)

--uncompressed Uncompressed kmers file [Default: gzipped]
--cpu CPU Processes [Default: 1]
--block_size BLOCK_SIZE

Number of variants per core [Default: 3000]
--version show program's version number and exit

1.3 Best practices

1.3.1 Doing a genome-wide association study?

If you want to evaluate the effect of individual genomic variants on a phenotype of interest, while accounting for possible
confounders, you will want to run a genome-wide association study. This will give a p-value for every genomic variant,
comparing the alternative hypothesis that the variant does have an effect on phenotype (has an effect size 𝛽 > 0) with
the null hypothesis that the variant has no effect.

For this mode you will need at least three input files:

• Genetic variants (--kmers, --vcf or --pres).

• A phenotype (--phenotypes).

• A representation of the population structure (--distances or --similarity).

For a starting point, have a look at GWAS tutorial.

Current ‘best-practice’ GWAS recommendations:

• Use the --lmm mode.

• Use a phylogeny to generate the --similarity matrix.

• Use unitigs as the input, provided with the --kmers option. End-to-end analysis is identical to k-mers.

• If you have covariates, provide them with –covariates and –use-covariates.

Once this works, you may also wish to also add the following extra analyses:

• A burden test with --vcf and --burden.

• Tests of other forms of variation (genes, structural variants from panaroo.

1.3. Best practices 7

https://github.com/johnlees/unitig-caller
https://gtonkinhill.github.io/panaroo/#/

pyseer Documentation, Release 1.3.10

• Extract lineage effects with --lineage.

1.3.2 Trying to predict a phenotype from genetics?

If you want to predict a phenotype in new samples where it is unmeasured, or look at the power of genetic variants to
predict a phenotype, you’ll want to use a whole-genome model.

You will need:

• Genetic variants (--kmers, --vcf or --pres).

• A phenotype (--phenotypes).

A good starting place is to read Prediction tutorial.

Current ‘best-practice’ prediction recommendations:

• Use --wg enet --save-vars and --wg enet --load-vars to save time in future runs.

• Use unitigs, if you can.

• For large variant sets, use a small number of --cpu to keep memory use manageable.

• Divide the population into strains with PopPUNK and use these definitions with --lineage-clusters and
--sequence-reweighting.

• Turn the correlation filter off with --cor-filter 0.

1.3.3 Trying to calculate heritability?

If you want an estimate of what proportion of the phenotype variance can be explained by genomic variation, known
as the heritability ℎ2, you can use either of the above modes to do this.

With --lmm an estimate for ℎ2 will be printed to stderr, based on the GCTA model (all variants affect the phenotype,
with normally distributed effect sizes).

With --wg enet and estimate for ℎ2 will also be printed to stderr, based on the average prediction accuracy 𝑅2 in
held-out samples during cross-validation.

For a comparison of these approaches, see:

Lees, John A., Mai, T. T., et al. Improved inference and prediction of bacterial genotype-phenotype associations using
interpretable pangenome-spanning regressions. (2020)

Preprint: https://doi.org/10.1101/852426

1.4 Usage

Quick start:

pyseer --phenotypes phenotypes.tsv --kmers kmers.gz --distances structure.tsv --min-af 0.
→˓01 --max-af 0.99 --cpu 15 --filter-pvalue 1E-8 > pyseer.assoc

Will run the original seer model on given phenotypes and k-mers, using MDS scaling of the pairwise distances pro-
vided to correct for population structure. This will paralellize the analysis over 15 cores.

See the Best practices page for guidance on which options to use.

8 Chapter 1. Citations

https://www.poppunk.net
https://doi.org/10.1101/852426

pyseer Documentation, Release 1.3.10

• Input

– Phenotype and covariates

– k-mers

– unitigs

– SNPs and INDELs

– Genes and intergenic regions, or any other variant type

– Rare variants

– Filtering

• Population structure

– mash

– Phylogeny based

– Genotype matrix

– No population structure correction

• Association models

– Fixed effects (SEER)

– Mixed model (FaST-LMM)

– Whole genome models (elastic net)

∗ Prediction with the elastic net

– Lineage effects (bugwas)

• Output

– Notes field

– Number of unique patterns

– Effect sizes

• Processing k-mer output

– Mapping to references (phandango)

– Annotating k-mers

• Processing unitig output

1.4. Usage 9

pyseer Documentation, Release 1.3.10

1.4.1 Input

pyseer will automatically take the intersection of samples found in the phenotype file and the population structure file.
Only variation within these samples will be considered. Information on this is printed to STDERR.

Phenotype and covariates

The phenotype file is required to be supplied using the --phenotypes option. The format is tab-delimited, with the
sample name in the first column, and the phenotype in the last column. A header is required as the first row:

samples continuous binary
sample_1 1 0
sample_2 2 1
sample_3 3 1
sample_4 4 1
sample_5 5 1
sample_6 6 1
sample_7 7 0

The default column to use as the phenotype is the last column, but you can provide an explicit value with
--phenotype-column. Missing phenotypes can be supplied as ‘NA’. If all values are 0 or 1 a binary phenotype
is assumed (only relevant for the fixed effect model), otherwise a continuous phenotype is used. Use --continuous
to force this behaviour.

Warning: Using numbers as the sample names has been reported to cause problems in some modes and versions
of pyseer. While we have tried to fix this issue, if you run into trouble try chaning your sample names into a string
(e.g. by adding an underscore at the end of every name).

Covariate files (--covariates) must be tab-delimited with a header row, and the first column must contain the sample
names:

samples time cluster
sample_1 1 cluster1
sample_2 2 cluster2
sample_3 3 cluster0
sample_4 4 cluster1
sample_5 5 cluster2
sample_6 6 cluster0
sample_7 7 cluster1

Choose which covariates to use with --use-covariates. Provide space separated column numbers to use. The
default is that the covariates are labels, but for a quantitative covariate add ‘q’ after the column number. For the above
example --use-covariates 2q 3 would be the correct argument.

10 Chapter 1. Citations

pyseer Documentation, Release 1.3.10

k-mers

Variable length k-mers counted by fsm-lite or dsm-framework are input with the --kmers option. This file is assumed
to be gzipped, use the --uncompressed option if they aren’t. If you wish to use dsk to count k-mers you will need to
use combineKmers from the original seer installation to convert them to the correct input format.

If needed, both fsm-lite and seer can be installed through conda. See Installation for details.

Note: For common variation k-mers or unitigs should probably be your variant of choice. seer was mainly designed
to work with k-mers, due to their ability to test variation across the pan-genome without the need to call variants against
multiple references, or deal with the complexities of constructing accurate COGs for the whole population. We have
included these input formats for convenience and flexibility.

We would recommend the use of SNPs and genes in addition to k-mers, or for a quick first pass analysis.

unitigs

Unitigs are nodes in a compressed de Bruijn graph, and remove some of the redundancy present in k-mer counting, as
well as presenting fewer tests (and advantage both computationally and statistically) and being easier to interpret thanks
to their length and context provided by the variation graph.

Unitigs can both be counted, and called consistently in new populations, using the unitig-caller package.

An older version of the package, giving the same results, is available as unitig-counter (see documentation in the
README.md).

Usage is then identical to k-mers, providing input with the --kmers options, and --uncompressed if necessary.

Note: Both packages can be installed thorough conda, see Installation for details.

SNPs and INDELs

Short variation (SNPs and INDELs) can be read from a VCF file using the PySAMmodule. Simply use the --vcf option
to read in your file.

If you have multiple VCF files (e.g. one per sample) you can combine them with bcftools:

bcftools merge -m none -0 -O z *.vcf.gz > merged.vcf.gz

Sample names are taken from the header row. Only one ALT variant per row is supported, if you have multiple alternative
variants use:

bcftools norm -m - <in.vcf> > out.vcf

to split them into multiple rows otherwise they will be skipped. If FILTER fields are present only those with ‘PASS’
will be processed.

Note: The GT field is used to determine variant presence/absence. ‘0’ or ‘.’ is absence, anything else is presence.

1.4. Usage 11

https://github.com/nvalimak/fsm-lite
https://github.com/HIITMetagenomics/dsm-framework
https://github.com/GATB/dsk
https://github.com/johnlees/unitig-caller
https://github.com/johnlees/unitig-counter

pyseer Documentation, Release 1.3.10

Genes and intergenic regions, or any other variant type

COG or intergenic region variation is represented as an .Rtab file by roary and piggy:

Gene sample_1 sample_2
COG1 1 1
COG2 1 0

These can be used directly with --pres, and this format can be used flexibly to represent variants from other sources.

Rare variants

pyseer supports burden testing of rare variants. Variants at low frequency which are associated with the phenotype
cannot be detected by a standard regression model. A burden test groups sets of rare variants with the same predicted
biological effect, and then treats these sets like common variants.

Note: Group variants only with the same predicted functional effect. A good start would be all loss of function
mutations (frameshift or stop gained/nonsense) within a gene. This can be expanded to operons or pathways, and to
variants predicted as damaging (missense) or all variants. Burden tests assume all variants in a group have the same
direction of effect, and will lose power if this assumption is broken.

To run a burden test, available under any of the association models below, requires a VCF file of SNPs and INDELs.
First predict the function of mutations (using VEP or bcftools csq) and filter the VCF file appropriately on variant
frequency and predicted effect:

bcftools view -Q 0.01 -i 'CSQ[*] ~ "stop_gained" snps_indels.vcf.gz | CSQ[*] ~
→˓"frameshift_variant"' | bgzip -c > low_freq_vars.vcf.gz

Then run pyseer providing a list of regions to group variants by to the --burden option and the filtered VCF file with
--vcf. These regions are one per line, with their name and the bcftools style region co-ordinates:

CDS1 FM211187:3910-3951
CDS2 FM211187:4006-4057

Multiple regions can be specified for a single burden test, by separating each region using a comma:

pathway1 FM211187:4006-4057,FM211187:5673-5777

Warning: The same frequency filters as for common variants still apply. Only groups within the threshold will
be tested. To ensure only rare variants enter the sets, you will need to pre-filter the VCF file with bcftools as shown
above.

12 Chapter 1. Citations

https://sanger-pathogens.github.io/Roary/
https://github.com/harry-thorpe/piggy
https://useast.ensembl.org/info/docs/tools/vep/index.html
http://www.htslib.org/doc/bcftools.html#csq

pyseer Documentation, Release 1.3.10

Filtering

Filtering on allele frequency is necessary, unless the input has already been filtered. We would recommend only
including variants with a minor allele count of at least five. Use --min-af and --max-af to achieve this. The default
is to test variants with a MAF > 1%.

If computational resources are limited, you can use the unadjusted p-value as a pre-filter --filter-pvalue. 10−5 is
a reasonable value, or three orders of magnitude below your final significance threshold. If you just want to plot the
significant results, or save space in the output you can also print just those passing a final threshold with --lrt-pvalue.

Warning: We would recommend not filtering on p-value if possible. It is possible that variants not significant
before correction may be significant afterwards, and taking a final threshold will prevent a Q-Q plot from being
used to test for inflation of p-values.

1.4.2 Population structure

To adjust for population structure, the fixed effects (Fixed effects (SEER)) model needs a matrix with distances between
all pairs of samples in the analysis:

sample_1 sample_2 sample_3
sample_1 0 0.0115761 0.0119383
sample_2 0.0115761 0.0 0.0101878
sample_3 0.0119383 0.0101878 0.0

This file is included with --distances. The default is to perform classical MDS on this matrix and retain 10 dimen-
sions. The type of MDS performed can be changed with the --mds option to metric or non-metric if desired. Once
the MDS has run once, the --save-m argument can be used to save the result to file. Subsequent runs can then be
provided with this decomposition directly using load-m rather than recomputing the MDS.

An alternative to using a distance matrix in the fixed effects analysis is to provide clusters of samples with the same
genetic background (e.g. from BAPS) as a categorical covariate with the --use-covariates option. In this case you
should also add the --no-distances options to allow running without one of the matrices below, which would define
these covariates twice.

The mixed effects model (Mixed model (FaST-LMM)) needs a matrix with covariances/similarities included with
--similarities between all pairs of samples in the analysis:

sample_1 sample_2 sample_3
sample_1 0.319 0.004 0.153
sample_2 0.004 0.004 0.004
sample_3 0.153 0.004 0.288

This is known as the kinship matrix𝐾. Analagously to the MDS runs, the decomposition can be save with --save-lmm
and loaded with --load-lmm in subsequent analysis rather than processing the similarity matrix again.

Both types of matrix are necessarily symmetric. The entries along the diagonal of a pairwise distance matrix are zeros.
The matrices can be generated in three ways.

1.4. Usage 13

pyseer Documentation, Release 1.3.10

mash

mash can be used to rapidly estimate distance between samples. First of all create a sketch of all your samples (assuming
assembled contigs in fasta files):

mash sketch -s 10000 -o samples *.fa

Calculate the pairwise distances and create a distance matrix:

mash dist samples.msh samples.msh | square_mash > mash.tsv

These distances can only be used with the fixed effects model.

Phylogeny based

If you have a high quality phylogeny (removing recombination, using a more accurate model of evolution) using this to
calculate pairwise distances may be more accurate than mash. For the fixed effects model you can extract the patristic
distances between all samples. Using a newick file:

python scripts/phylogeny_distance.py core_genome.tree > phylogeny_distances.tsv

For use with Mixed model (FaST-LMM) add the --calc-C or --lmm option (which are equivalent). This calculates
the similarities based on the shared branch length between each pair’s MRCA and the root (as PDDIST):

python scripts/phylogeny_distance.py --lmm core_genome.tree > phylogeny_similarity.tsv

If you want to ignore branch lengths (not usually recommended) use the --topology option. Other tree formats
supported by dendropy can be used by specifying --format.

Genotype matrix

For a mixed model association the FaST-LMM default is to use the genotype matrix (design matrix) of variant presence
absence to calculate the kinship matrix 𝐾 = 𝐺𝐺𝑇 . To use this method for the --similarity option use the similarity
script with any valid pyseer input variant type:

similarity_pyseer --vcf core_gene_snps.vcf sample_list.txt > genotype_kinship.tsv

Where sample_list.txt is a file containing sample names to keep, one on each line.

Warning: Choose the input to this command carefully. Using too few variants or those which don’t represent ver-
tical evolution may be inaccurate (e.g. the roary gene presence/absence list). Choosing too many will be prohibitive
in terms of memory use and runtime (e.g. all k-mers). A VCF of SNPs from the core genome is a good tradeoff in
many cases.

14 Chapter 1. Citations

http://mash.readthedocs.io/en/latest/
https://pypi.python.org/pypi/DendroPy

pyseer Documentation, Release 1.3.10

No population structure correction

You can run the fixed effects model without a population structure correction. As this is generally not recommended
you need to add the --no-distances option to allow the analysis to run.

Situations where this may be desirable are when you are using population structure(/lineage) as the phenotype i.e.
looking for k-mers which define lineages, or if you are correcting for population structure manually using covariates
such as cluster IDs.

1.4.3 Association models

Symbols used:

Symbol Meaning
𝑦 A vector containing the phenotype for each sample.
𝑊 A design matrix containing the covariates, and the MDS components if SEER’s model is used.
𝑎 Fixed effects for the covariates.
𝑋 A design matrix (/vector) containing the variant presence/absence.
𝑏 Fixed effects for the variant (also known as beta/effect size).
𝐾 The kinship matrix of relations between all pairs of samples.
𝐺 The genotype matrix of all variant presence/absence.
𝑢 Random effects for each row of the kinship matrix.

Fixed effects (SEER)

If provided with a valid phenotype and variant file this is the default analysis run by pyseer. In summary, a generalized
linear model is run on each k-mer (variant), amounting to multiple linear regression for continuous phenotypes and
logistic regression for binary phenotypes. Firth regression is used in the latter case when large effect sizes are predicted.
For details see the original publication.

𝑦 ∼ 𝑊𝑎+𝑋𝑏

The most important adjustment to this analysis is choosing the number of MDS components with the
--max-dimensions argument. Once you have your --distances matrix, draw a scree plot:

scree_plot_pyseer mash.tsv

This will show the variance explained (the eigenvalues of each MDS component) for the first 30 dimensions (increased
using --max-dimensions to scree_plot_pyseer). You can pick a value at the ‘knee’ of this plot, or choose to
include much of the total variation. Consider choosing around the first 30 components.

Mixed model (FaST-LMM)

A linear mixed model (LMM) of fixed and random effects can be fitted by adding the --lmm option, as well as either
--similarities or --load-lmm from a previous analysis.

𝑦 ∼ 𝑊𝑎+𝑋𝑏+𝐾𝑢

We use FaST-LMM’s likelihood calculation to compute this model in linear time for each variant. The phenotype is
always treated as continuous, which in the case of case/control data may cause some loss of power.

1.4. Usage 15

https://www.nature.com/articles/ncomms12797
http://dx.doi.org/10.1038/nmeth.1681

pyseer Documentation, Release 1.3.10

The main advantage of this model is that all relationships are implicitly included and selection of the number of com-
ponents to retain is not necessary. In comparison to the fixed effect model this has shown to better control inflation of
p-values (https://elifesciences.org/articles/26255).

In addition this model will output the narrow sense heritability ℎ2, which is the proportion of variance in phenotype
explained by the genetic variation when maximizing the log-likelihood:

𝐿𝐿(𝜎2
𝐸 , 𝜎

2
𝐺, 𝛽) = log𝑁(𝑦|𝑋𝛽;𝜎2

𝐺𝐾 + 𝜎2
𝐸𝐼)

ℎ2 =
𝜎2
𝐺

𝜎2
𝐺 + 𝜎2

𝐸

This assumes effect sizes are normally distributed, with a variance proportional to the total genetic variance (the GCTA
model). See this paper for more information on the heritability of pathogen traits.

Warning: pyseer will print the ℎ2 estimate to STDERR, but it will only be valid under the assumptions of the
model used. You may wish to compare estimates from other software, and particular care should be taken with
binary phenotypes.

Whole genome models (elastic net)

All variants can be included at once with the --wg mode. Currently only the elastic net is implemented, but more
models will be included in future.

An elastic net can be fitted to all the variants at once by providing the --wg enet option, using the glmnet package to
solve the following problem:

min
𝑏0,𝑏

1

𝑁

𝑁∑︁
𝑖=1

𝑤𝑖𝑙(𝑦𝑖, 𝑏0 + 𝑏𝑇𝑥𝑖)
2 + 𝜆

[︀
(1− 𝛼)||𝑏||22/2 + 𝛼||𝑏||1

]︀
with the link function 𝑤𝑖𝑙() set by the phenotype error distribution.

In this mode, all the variants are read into an object in memory, a correlation-based filter is applied, the model is fitted,
then those variants with non-zero 𝑏 are printed in the output. The model is fit by ten-fold cross-validation to pick the
𝜆 which gives the lowest deviance when compared to the true phenotypes. Higher 𝜆 leads to smaller fitted 𝑏 values.
These values, along with the corresponding best 𝑅2 will be written to STDERR. Setting 𝛼 closer to one will remove
more variants from the model by giving them zero beta.

Tip: Population structure can be included using --sequence-reweighting and --lineage-clusters. Use of the
latter will also use these clusters to give a more representative cross-validation accuracy. See Prediction tutorial for
more details.

Cross-validation uses --cpu threads, which is recommended for better performance.

Warning: As all variants are stored in memory, and potentially copied, very large variant files will cause this
method to run out of RAM. We therefore do not recommend running on k-mers, but to use unitigs instead. SNPs
and genes work fine.

By default, the top 75% of variants correlated with the phenotype are included in the fit. Variants will include the
unadjusted single-variate p-values, if distances have been provided with either --distances or --load-m the adjusted
p-values will also be present.

16 Chapter 1. Citations

https://elifesciences.org/articles/26255
http://dx.doi.org/10.1093/molbev/msx328
https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html

pyseer Documentation, Release 1.3.10

Option Use
--save-varsSave the object representing all objects to disk. Useful for reruns, or using multiple phenotypes.
--load-varsLoad the variants saved to disk, the most time-consuming step.
--save-modelSave the fitted model so that one can perform Prediction with the elastic net on samples with unobserved

phenotypes.
--alpha Sets the mixing between ridge regression (0) and lasso regression (1) in the above formula. Default is

0.0069 (closer to ridge regression)
--n-folds Number of folds in cross validation (samples removed to test prediction accuracy). Default is 10.
--cor-filterSet the correlation filter to discard the variants with low correlation to the phenotype. Default is 0.25

(keeping the top 75% variants correlated with phenotype).

Note: When using --load-vars you still need to provide the original variant file with --vcf, --kmers or --pres
as this is read again to output the selected variants. pyseer will test that the checksums of this files is identical to that
used with --save-vars, and will warn if any difference is detected.

Prediction with the elastic net

If --wg was used with --save-model this fit can be used to attempt to predict the phenotype of new samples without
a phenotype label:

enet_predict --vcf new_snps.vcf.gz old_snps.lasso_model.pkl samples.list > lasso.
→˓predictions.txt

Provide the samples you wish to predict the phenotype of in samples.list along with comparable variants and
covariates to that which were used in the original model. If any variant or covariate is not found in the new input this
will be noted on STDERR and the mean values (the originally observed allele frequency) will be used instead. Use
--ignore-missing to turn this off.

See Prediction tutorial for more examples.

Lineage effects (bugwas)

Earle et al introduced the distinction between ‘lineage’ and ‘locus’ effects. Also see this review. The p-values out-
put by pyseer are aimed at finding ‘locus’ effects. To find lineage effects Earle et al proposed ordering variants by
those associated with both the phenotype and a lineage highly associated with a phenotype. They performed this by
decomposing the random effects to find the principal component each variant was most associated with, and then order
variants by those principal components most associated with the phenotype.

To perform a similar analysis in pyseer, add the --lineage option. This first checks the lineages most associated
with the phenotype:

𝑦 ∼ 𝑊𝑎

writing the results to --lineage_file, ordered by the most associated lineage. For each variant, after the main regres-
sion the lineage the variant belongs to is chosen by the most significant when regressing the variant presence/absence
on the lineages:

𝑋 ∼ 𝑊𝑎

1.4. Usage 17

https://www.nature.com/articles/nmicrobiol201641
https://figshare.com/articles/The_background_of_bacterial_GWAS/5550037

pyseer Documentation, Release 1.3.10

To pick lineage effects, those variants assigned to a lineage highly associated with the phenotype in the
--lineage_file and with a significant p-value should be chosen. A Manhattan plot, with the x-axis order defined by
the lineage column in the output, can be created.

The default is to use the MDS components to define lineage effects, but you can supply custom lineage definitions such
as BAPS clusters with the --lineage-clusters options:

sample_1 BAPS_3
sample_2 BAPS_16
sample_3 BAPS_27
sample_4 BAPS_3

Note: One of these clusters will be removed to ensure the regressions are of full rank. Therefore there is one cluster
variants will never be assigned to. This is chosen as the cluster least associated with the phenotype.

1.4.4 Output

pyseer writes output to STDOUT, which you can redirect with a pipe >. The format is tab separated, one line per
variant tested and passing filtering, with the first line as a header. Add --print-samples to print the k-samples and
nk-samples fields.

Fields for a fixed effect analysis:

Field Meaning
variant sequence of k-mer or ID of variant from VCF or Rtab.
af allele frequency. The proportion of samples the variant is present in.
filter-pvalue association of the variant with the phenotype, unadjusted for population structure.
lrt-pvalue the p-value of association, adjusted for population structure. This corresponds to the LRT

p-value of seer.
beta the effect size/slope of the variant. For a binary phenotype, exponentiate to obtain the odds-

ratio.
beta-std-err the standard error of the fit on beta.
intercept the intercept of the regression.
PCX the slope each fixed effect (covariate and MDS component).
k-samples (op-
tional)

the samples the variant is present in (comma separated).

nk-samples (op-
tional)

the samples the variant is not present in (comma separated).

lineage (optional) the lineage the variant is most associated with.
notes notes about the fit.

Fields for a mixed model analysis:

18 Chapter 1. Citations

pyseer Documentation, Release 1.3.10

Field Meaning
variant sequence of k-mer or ID of variant from VCF or Rtab.
af allele frequency. The proportion of samples the variant is present in.
filter-pvalue association of the variant with the phenotype, unadjusted for population structure.
lrt-pvalue the p-value from the mixed model association, as given by FaST-LMM.
beta the effect size/slope of the variant.
beta-std-err the standard error of the fit on beta.
variant_h2 the variance in phenotype explained by the variant. The ℎ2 for this variant alone.
k-samples (optional) the samples the variant is present in
nk-samples (optional) the samples the variant is not present in
lineage (optional) the lineage the variant is most associated with.
notes notes about the fit.

Notes field

Possible ‘notes’ are:

Note Meaning
af-filter Variant failed set allele frequency filters --min-af or --max-af.
pre-filtering-failed Variant failed filter-pvalue filter .
lrt-filtering-failed Variant failed lrt-pvalue filter.
bad-chisq 𝜒2 test was invalid, suggesting either a very high effect size or low allele frequency. Firth

regression used.
high-bse SE of fit was >3, which may imply a high effect size. Firth regression used.
perfectly-
separable-data

Variant presence and phenotype exactly correlate, so regression cannot be fitted.

firth-fail Firth regression failed (did not converge after 1000 iterations).
matrix-inversion-
error

A pseudo-inverse could not be taken, preventing model from being fitted. This likely implies
nearly separable data.

missing-data-error Model could not be fitted because of missing data or inf values.

Number of unique patterns

One way to pick the threshold for significance is to use a Bonferroni correction with the number of unique variant
patterns as the number of multiple tests. When running pyseer add the --output-patterns option to write a file
with hashes of the patterns.

Then run the count_patterns.py script on this output:

python scripts/count_patterns.py --alpha 0.05 --cores 4 --memory 1000 --temp /tmp␣
→˓patterns.txt

This will return the number of unique patterns and the significance threshold. --alpha is the unadjusted significance
threshold to use. The other options interface to GNU sort to speed up the calculation, and control the amount of data
stored in main memory/where to store on disk.

1.4. Usage 19

pyseer Documentation, Release 1.3.10

Effect sizes

The effect size is referred to as 𝛽. For a binary phenotype, fitted with the fixed effect model, the odds ratio can be
calculated with 𝑒𝛽 . For continuous phenotypes or if using the linear mixed model (even with a binary phenotype) the
𝛽 roughly gives the absolute increase in probability.

For example, if a 5% of samples without a variant have a phenotype, and 𝛽 = 0.6, then around 65% of samples with
the variant would be expected to have the phenotype, giving an odds ratio of 0.65

0.05 = 13.

For a more accurate transformation, see this article and the accompanying shiny app.

1.4.5 Processing k-mer output

See the GWAS tutorial for full concrete examples.

Mapping to references (phandango)

K-mers can be mapped to reference genomes using the provided script and a fasta file of the reference:

phandango pyseer_kmers.assoc reference_1.fa reference_1.plot

These .plot files can be dragged and dropped into phandango along with a reference annotation file (the .gff file
corresponding to the fasta reference file). Phandango will display the length of the k-mer as well as its position. The
y-axis is −log10(𝑝).

Warning: If all the k-mers are plotted performance will be slow. It is computationally challenging to render tens of
millions of k-mers with a real time interface, so we recommend filtering out those with a p-value below a threshold
value for interactive performance.

Annotating k-mers

K-mers can also be annotated with the gene they are in, or nearby. This requires a list of annotations. Trusted references
are used first, and allow a close match of k-mer (using bwa mem). Draft annotations, ideally those the k-mers were
counted from, are used second, and require an exact match of the k-mer (using bwa fastmap).

K-mers will be iteratively mapped to references in the order provided, either until all the references are used, or all
k-mers have been mapped:

annotate_hits_pyseer pyseer_kmers.assoc references.txt kmer_annotation.txt

The references.txt file contains the sequence, annotation and type of the references to be used:

D39.fa D39.gff ref
TIGR4.fa TIGR4.gff ref
sample1.fa sample1.gff draft
sample2.fa sample2.gff draft

To map all of the k-mers, and ensure good quality annotation where possible, provide a few trusted references as the
first lines in this file. You can then list all of the assemblies used as input after this, designated as draft.

For each k-mer, each match will be returned in the format ‘contig:pos;gene_down;gene_in;gene_up’ i.e. the closest
downstream gene, the gene the k-mer is in (if it is), the closest upstream gene. The gene name will be chosen if in the
GFF, otherwise the gene ID will be used.

20 Chapter 1. Citations

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5887138/
https://shiny.cnsgenomics.com/LMOR/
http://jameshadfield.github.io/phandango/#/

pyseer Documentation, Release 1.3.10

Note: This analysis uses bedtools to find overlapping and nearby genes. A working installation of bedtools is therefore
required. The construction of each query is slow, so only significant k-mers should be annotated in this manner.

Note: By default annotate_hits_pyseer will only consider CDS features in the provided GFF files. If
you want to consider other feature types you can use the --feature-type option (e.g. --feature-type rRNA
--feature-type tRNA).

To summarise these annotations over all significant k-mers, use the summarise_annotations.py script:

python scripts/summarise_annotations.py kmer_annotation.txt

For each gene name, the number of overlapping significant k-mers, maximum p-value, average MAF and average effect
size will be reported. This is ideal input for plotting with ggplot2.

1.4.6 Processing unitig output

As unitigs are sequence elements of variable length, identical steps can be taken as for k-mers, as described above.

Additionally, cdbg-ops provided by installing unitig-counter can be used to extend short unitigs leftwards and
rightwards by following the neightbouring nodes in the de Bruijn graph. This can help map sequences which on their
own are difficult to align in a specific manner.

Create a file unitigs.txt with the unitigs to extend (probably your significantly associated hits) and run:

cdbg-ops extend --graph output/graph --unitigs unitigs.txt > extended.txt

The output extended.txt will contain possible extensions, comma separated, with lines corresponding to unitigs in
the input. See the help for more options.

1.5 GWAS tutorial

For a short introduction to bacterial GWAS, you may wish to read this review.

This tutorial shows how to use pyseer to perform a GWAS for penicillin resistance using 616 S. pneumoniae genomes
collected from Massachusetts. These genomes were first reported here and can be accessed here. One of the earliest
GWAS studies in bacteria was performed using this data, and we will try to replicate their results.

The data for this tutorial can be accessed here. Extract the archive:

tar xvf pyseer_tutorial.tar.bz2

To find the following files:

1.5. GWAS tutorial 21

http://ggplot2.tidyverse.org/reference/
https://figshare.com/articles/The_background_of_bacterial_GWAS/5550037
https://www.nature.com/articles/ng.2625
https://www.nature.com/articles/sdata201558
http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1004547
https://dx.doi.org/10.6084/m9.figshare.7588832

pyseer Documentation, Release 1.3.10

File Contents
assemblies.tar.bz2 Archive of genome assemblies.
fsm_file_list.txt Input to run fsm-lite.
snps.vcf.gz SNPs mapped against the Spn23F reference.
gene_presence_absence.Rtab Output from roary run on these genomes.
core_genome_aln.tree IQ-TREE phylogeny (using -m GTR) from the core genome alignment.
resistances.pheno Whether an isolate was resistant to penicillin, to be used as the phenotype.
mash_sketch.msh mash sketch output, from running mash sketch -s 10000 -o mash_sketch *.

fa.
Spn23F.fa 23FSpn sequence.
Spn23F.gff 23FSpn sequence and annotation.
6952_7#3.fa The draft sequence assembly of one isolate in the collection.
6952_7#3.gff The draft annotation of the isolate.

Note: To run commands with the scripts/ directory you will need to have cloned the github repository (though other
commands can continue to be run using your conda/pip install.

1.5.1 SNP and COG association with fixed effects model

We will first of all demonstrate using pyseer with the original seer model, using MDS components as fixed effects
to control for the population structure. We will test the association of SNPs mapped to a reference (provided as a VCF
file) and COG presence/absence (provided as and Rtab file, from running roary on the annotations).

The first step is to estimate the population structure. We will do this using a pairwise distance matrix produced using
mash. Either create the mash sketches yourself:

mkdir assemblies
cd assemblies
tar xf ../assemblies.tar.bz2
cd ..
mash sketch -s 10000 -o mash_sketch assemblies/*.fa

or use the pre-computed mash_sketch.msh directly. Next, use these to calculate distances between all pairs of samples:

mash dist mash_sketch.msh mash_sketch.msh| square_mash > mash.tsv

Note: Alternatively, we could extract patristic distances from a phylogeny: python scripts/
phylogeny_distance.py core_genome_aln.tree > phylogeny_dists.tsv

Let’s perform an MDS and these distances and look at a scree plot to choose the number of dimensions to retain:

scree_plot_pyseer mash.tsv

22 Chapter 1. Citations

http://www.iqtree.org/
http://jb.asm.org/content/191/5/1480
http://jb.asm.org/content/191/5/1480

pyseer Documentation, Release 1.3.10

There is a drop after about 8 dimensions, so we will use this many. This is subjective, and you may choose to include
many more. This is a sensitivity/specificity tradeoff – choosing more components is more likely to reduce false positives
from population structure, at the expense of power. Using more components will also slightly increase computation
time.

We can now run the analysis on the COGs:

pyseer --phenotypes resistances.pheno --pres gene_presence_absence.Rtab --distances mash.
→˓tsv --save-m mash_mds --max-dimensions 8 > penicillin_COGs.txt

Which prints the following to STDERR:

Read 603 phenotypes
Detected binary phenotype
Structure matrix has dimension (616, 616)
Analysing 603 samples found in both phenotype and structure matrix
10944 loaded variants
4857 filtered variants
6087 tested variants
6087 printed variants

pyseer has automatically matched the sample labels between the inputs, and only used those which were present in
the phenotype file. This has accounted for the fact that not all of the samples were measured for the current phenotype.
We have used the default filters, so only intermediate frequency COGs have been considered. The core genome COGs
and low frequency COGs are in the 4857 filtered out. Take a look at the top hits:

sort -g -k4,4 penicillin_COGs.txt | head

variant af filter-pvalue lrt-pvalue beta beta-std-err intercept ␣
→˓PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 notes
group_4276 7.79E-02 1.27E-11 2.70E-21 1.29E+01 7.12E-01␣
→˓ -1.29E+00 -7.01E-01 -2.75E+00 -6.64E+00 -9.02E-01 1.
→˓46E+01 -3.83E+00 -6.05E-01 -4.25E+00 high-bse
group_4417 8.96E-02 3.21E-09 4.72E-20 -6.08E+00 6.99E-01␣
→˓ -4.51E-01 -1.12E+00 5.08E-01 -5.61E+00 8.20E-01 8.
→˓19E+00 -4.95E-01 -4.53E-01 9.70E-01 bad-chisq
cpsG 1.18E-01 1.34E-16 1.69E-19 3.77E+00 5.25E-01 -
→˓1.34E+00 2.49E+00 1.24E-01 -5.19E+00 6.57E-01 1.01E+01 8.

(continues on next page)

1.5. GWAS tutorial 23

pyseer Documentation, Release 1.3.10

(continued from previous page)

→˓38E-02 -3.06E-01 8.48E-01
group_3096 1.18E-01 1.34E-16 1.69E-19 3.77E+00 5.25E-01␣
→˓ -1.34E+00 2.49E+00 1.24E-01 -5.19E+00 6.57E-01 1.
→˓01E+01 8.38E-02 -3.06E-01 8.48E-01
group_5738 1.18E-01 1.34E-16 1.69E-19 3.77E+00 5.25E-01␣
→˓ -1.34E+00 2.49E+00 1.24E-01 -5.19E+00 6.57E-01 1.
→˓01E+01 8.38E-02 -3.06E-01 8.48E-01
group_8161 1.18E-01 1.34E-16 1.69E-19 3.77E+00 5.25E-01␣
→˓ -1.34E+00 2.49E+00 1.24E-01 -5.19E+00 6.57E-01 1.
→˓01E+01 8.38E-02 -3.06E-01 8.48E-01
group_8834 1.18E-01 1.34E-16 1.69E-19 3.77E+00 5.25E-01␣
→˓ -1.34E+00 2.49E+00 1.24E-01 -5.19E+00 6.57E-01 1.
→˓01E+01 8.38E-02 -3.06E-01 8.48E-01
mnaA 1.18E-01 1.34E-16 1.69E-19 3.77E+00 5.25E-01 -
→˓1.34E+00 2.49E+00 1.24E-01 -5.19E+00 6.57E-01 1.01E+01 8.
→˓38E-02 -3.06E-01 8.48E-01
tagA 1.18E-01 1.34E-16 1.69E-19 3.77E+00 5.25E-01 -
→˓1.34E+00 2.49E+00 1.24E-01 -5.19E+00 6.57E-01 1.01E+01 8.
→˓38E-02 -3.06E-01 8.48E-01

Note that the first two rows have notes high-bse and bad-chisq respectively. For the former this may represent a
high effect size, low frequency results. For the latter this is likely due to the MAF filter not being stringent enough.
The identical p-values of the other results are as these COGs appear in exactly the same set of samples.

We will now perform an analysis using the SNPs produced from mapping reads against the provided reference genome.
To speed up the program we will load the MDS decomposition mash_mds.pkl which was created by the COG analysis
above:

pyseer --phenotypes resistances.pheno --vcf snps.vcf.gz --load-m mash_mds.pkl --lineage -
→˓-print-samples > penicillin_SNPs.txt

This gives similar log messages:

Read 603 phenotypes
Detected binary phenotype
Loaded projection with dimension (603, 269)
Analysing 603 samples found in both phenotype and structure matrix
Writing lineage effects to lineage_effects.txt
198248 loaded variants
81370 filtered variants
116878 tested variants
116700 printed variants

We haven’t specified the number of MDS dimensions to retain, so the default of 10 will be used (anything up to the 269
retained positive eigenvalues could be chosen). Turning on the test for lineage effects with --lineage uses the MDS
components as the lineage, and writes the lineages most associated with the phenotype to lineage_effects.txt:

lineage wald_test p-value
MDS3 10.3041807281 0.0
MDS10 6.61332035523 3.75794950713e-11
MDS5 6.03559150525 1.58381441295e-09
MDS4 2.35736678835 0.0184050574981
MDS6 1.33118701438 0.183127483126

(continues on next page)

24 Chapter 1. Citations

pyseer Documentation, Release 1.3.10

(continued from previous page)

MDS2 1.02523510885 0.305252266
MDS9 0.850386297867 0.39511035157
MDS7 0.780676383001 0.434992854366
MDS1 0.478181602218 0.632520955891
MDS8 0.344928992152 0.730147754076

Variants associated with both the phenotype and MDS3, MDS10 or MDS5 may therefore be of interest as lineage
effects.

The output now includes the lineage each variant is associated with, though not all variants can be assigned a lineage.
--print-samples forces the inclusion of a comma separated list of samples the variant is present in k-samples and
not present in nk-samples (not shown here for brevity):

variant af filter-pvalue lrt-pvalue beta beta-std-err intercept ␣
→˓PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 lineage␣
→˓notes
26_23_G 4.31E-02 3.31E-01 4.42E-01 -4.19E-01 5.49E-01 -
→˓9.22E-01 1.84E-01 -6.00E-01 -7.53E+00 8.84E-01 2.05E+01 -1.
→˓79E+00 2.69E-01 1.16E-01 -7.52E-01 3.66E+00 MDS1
26_31_G_T 5.64E-02 3.94E-06 1.00E+00 6.78E-01 6.92E-01␣
→˓ -8.90E-01 1.97E-01 -4.13E-01 -7.05E+00 8.63E-01 1.
→˓91E+01 -1.33E+00 3.02E-01 9.13E-02 -4.99E-01 3.35E+00␣
→˓ MDS10 bad-chisq
26_83_A_G 4.58E-01 9.88E-04 3.25E-01 4.06E-01 4.13E-01␣
→˓ -1.21E+00 -1.43E-01 -7.84E-01 -7.35E+00 6.13E-01 1.
→˓91E+01 -1.19E+00 1.73E-01 6.44E-01 -4.47E-01 3.63E+00␣
→˓ MDS6
26_109_G_A 1.33E-02 1.46E-01 2.10E-14 4.15E+01 7.25E-01␣
→˓ -9.97E-01 9.39E-02 3.33E-02 -9.52E+00 1.72E+00 3.
→˓41E+01 1.38E+00 4.43E-01 -1.20E+00 6.82E-02 4.28E+00
26_184_G_A 3.32E-02 1.06E-02 8.49E-01 1.75E-01 9.11E-01␣
→˓ -9.65E-01 1.37E-01 -5.96E-01 -7.42E+00 8.65E-01 1.
→˓98E+01 -1.71E+00 3.00E-01 2.78E-01 -6.18E-01 3.63E+00
26_281_C_T 1.01E-01 1.20E-05 3.97E-01 -5.91E-01 6.91E-01␣
→˓ -9.08E-01 1.12E-01 -7.04E-01 -7.24E+00 7.18E-01 2.
→˓02E+01 -1.73E+00 4.32E-01 3.50E-01 -6.84E-01 3.69E+00␣
→˓ MDS4
26_293_G_A 1.49E-02 3.50E-01 5.31E-01 7.06E-01 1.07E+00␣
→˓ -9.73E-01 1.29E-01 -6.11E-01 -7.49E+00 9.16E-01 2.
→˓03E+01 -1.54E+00 3.02E-01 2.55E-01 -5.93E-01 3.66E+00␣
→˓ MDS6
26_483_G_A 2.37E-01 7.85E-02 1.82E-02 9.16E-01 3.90E-01␣
→˓ -1.32E+00 -2.83E-01 -1.30E+00 -7.28E+00 6.77E-01 1.
→˓78E+01 -1.79E+00 2.59E-01 1.10E+00 3.15E-02 3.44E+00␣
→˓ MDS9
26_539_G_A 1.33E-02 1.46E-01 2.10E-14 4.15E+01 7.25E-01␣
→˓ -9.97E-01 9.39E-02 3.33E-02 -9.52E+00 1.72E+00 3.
→˓41E+01 1.38E+00 4.43E-01 -1.20E+00 6.82E-02 4.28E+00

This contains co-ordinates and p-values, which can be converted to a .plot file using the following awk one-liner:

cat <(echo "#CHRSNPBPminLOG10(P)log10(p)r^2") \\
<(paste <(sed '1d' penicillin_SNPs.txt | cut -d "_" -f 2) \\

(continues on next page)

1.5. GWAS tutorial 25

pyseer Documentation, Release 1.3.10

(continued from previous page)

<(sed '1d' penicillin_SNPs.txt | cut -f 4) | \\
awk '{p = -log($2)/log(10); print "26",".",$1,p,p,"0"}') | \\
tr ' ' '\t' > penicillin_snps.plot

If we drag and drop 23FSpn.gff and penicillin_snps.plot files into phandango you should see a Manhattan plot
similar to this:

The three highest peaks are in the pbp2x, pbp1a and pbp2b genes, which are the correct loci. There are also flat lines,
suggesting these may be lineage effects from population structure that has not been fully controlled for. In actual fact, if
we inspect the SNPs along these two lines (p = 2.10E-14 and p = 1.58E-15) we see that all of them are annotated
with the note bad-chisq and are at the lower end of the included minor allele frequency threshold (1.3% and 1.2%
respectively). These are therefore variants which were underpowered, and the associations are spurious. They should
be filtered out, and we should probably have used a MAF cutoff of at least 2% given the total number of samples we
have. As a rule of thumb, a MAF cutoff corresponding to a MAC of at least 10 isn’t a bad start. Let’s run it again:

pyseer --phenotypes resistances.pheno --vcf snps.vcf.gz --load-m output/mash_mds.pkl --
→˓min-af 0.02 --max-af 0.98 > penicillin_SNPs.txt

Read 603 phenotypes
Detected binary phenotype
Loaded projection with dimension (603, 269)
Analysing 603 samples found in both phenotype and structure matrix
198248 loaded variants
106949 filtered variants
91299 tested variants

(continues on next page)

26 Chapter 1. Citations

http://jameshadfield.github.io/phandango/#/

pyseer Documentation, Release 1.3.10

(continued from previous page)

91225 printed variants

A lot more low frequency variants have been filtered out this time, and if we make a plot file our Manhattan plot looks
much cleaner:

1.5.2 K-mer association with mixed effects model

We will now use k-mers as a variant to test both short variation as well as gene presence/absence. This can be done
using the steps above replacing the --vcf argument with --kmers, which would replicate the results from the original
seer tutorial. For demonstration purposes we will instead use the other association model available in pyseer, the
linear mixed model.

First, count the k-mers from the assemblies:

mkdir -p assemblies
cd assemblies
tar xvf ../assemblies.tar.bz2
fsm-lite -l ../fsm_file_list.txt -s 6 -S 610 -v -t fsm_kmers | gzip -c - > ../fsm_kmers.
→˓txt.gz
cd ..

This will require you to have fsm-lite installed If you do not have the time/resources to do this, you can follow the rest
of these steps using the SNPs as above.

1.5. GWAS tutorial 27

https://github.com/nvalimak/fsm-lite

pyseer Documentation, Release 1.3.10

Note: Everything here also applies to unitigs, which can be called with unitig-counter. These are generally recom-
mended due to their lower redundancy (and are also therefore faster) and potentially easier interpretation.

To correct for population structure we must supply pyseer with the kinship matrix 𝐾 using the --similarities
argument (or --load-lmm if using a previous analysis where --save-lmm was used).

We will use the distances from the core genome phylogeny, which has been midpointed rooted:

python scripts/phylogeny_distance.py --lmm core_genome_aln.tree > phylogeny_K.tsv

Note: Alternatively, we could extract a kinship matrix from the mapped SNPs by calculating 𝐾 = 𝐺𝐺𝑇

similarity_pyseer --vcf snps.vcf.gz samples.txt > gg.snps.txt

We can now run pyseer with --lmm. Due to the large number of k-mers we are going to test, we will increase the
number of CPUs used to 8:

pyseer --lmm --phenotypes resistances.pheno --kmers fsm_kmers.txt.gz --similarity␣
→˓phylogeny_K.tsv --output-patterns kmer_patterns.txt --cpu 8 > penicillin_kmers.txt

The heritability ℎ2 estimated from the kinship matrix 𝐾 is printed to STDERR, and after about 5 hours the results have
finished being written:

Read 603 phenotypes
Detected binary phenotype
Setting up LMM
Similarity matrix has dimension (616, 616)
Analysing 603 samples found in both phenotype and similarity matrix
h^2 = 0.90
15167239 loaded variants
1042215 filtered variants
14125024 tested variants
14124993 printed variants

Note: The heritability estimate shouldn’t be interpreted as a quantitative measure for this binary phenotype, but a high
heritability is consistent with the mechanism of penicillin resistance in this species (the sequence can give up to 99%
prediction accuracy of penicillin resistance).

The results look similar, though also include the heritability of each variant tested:

variant af filter-pvalue lrt-pvalue beta beta-std-err variant_h2 ␣
→˓notes
TTTTTTTTTTTT 8.11E-01 1.51E-06 1.05E-01 6.13E-02 3.78E-02␣
→˓ 6.60E-02
TTTTTTTTTTTTT 7.08E-01 6.20E-06 4.03E-01 -3.34E-02 3.98E-02␣
→˓ 3.41E-02
TTTTTTTTTTTTTT 5.97E-01 6.39E-05 1.81E-01 -4.05E-02 3.03E-02␣
→˓ 5.45E-02
TTTTTTTTTTTTTTT 3.55E-01 5.92E-04 7.90E-01 -6.84E-03 2.57E-02␣
→˓ 1.09E-02
TTTTTTTTTTTTTTTT 1.48E-01 2.11E-03 7.38E-01 1.13E-02 ␣

(continues on next page)

28 Chapter 1. Citations

https://github.com/johnlees/unitig-counter
http://mbio.asm.org/content/7/3/e00756-16
http://mbio.asm.org/content/7/3/e00756-16

pyseer Documentation, Release 1.3.10

(continued from previous page)

→˓3.37E-02 1.37E-02
TTTTTTTTTTTTTTTTT 6.47E-02 3.94E-01 4.89E-01 3.11E-02 ␣
→˓4.49E-02 2.83E-02
TTTTTTTTTTTTTTTTTT 3.48E-02 2.73E-02 2.59E-01 -6.73E-02 ␣
→˓5.96E-02 4.60E-02
TTTTTTTTTTTTTTTTTTT 2.32E-02 2.18E-01 6.96E-01 -2.81E-02 ␣
→˓7.19E-02 1.59E-02
TTTTTTTTTTTTTTTTTTTT 1.66E-02 2.58E-01 9.46E-01 -5.63E-03 ␣
→˓8.37E-02 2.74E-03

The downstream processing of the k-mer results in penicillin_kmers.txt will be shown in the next section. Before
that, we can determine a significance threshold using the number of unique k-mer patterns:

python scripts/count_patterns.py kmer_patterns.txt
Patterns: 2627332
Threshold: 1.90E-08

This is over five times lower than the total number of k-mers tested, so stops us from being hyper-conservative with the
multiple testing correction.

We can also create a Q-Q plot to check that p-values are not inflated. We can do that by using the qq_plot.py script:

python scripts/qq_plot.py penicillin_kmers.txt

which produces the following Q-Q plot:

When interpreting this plot, check that it is well controlled at low p-values and doesn’t show any large ‘shelves’ symp-
tomatic of poorly controlled confounding population structure. Although this plot is far above the null (as indeed, there
are many k-mers associated with penicillin resistance), the p-values up to 0.01 are as expected which is what we’re
after.

1.5. GWAS tutorial 29

pyseer Documentation, Release 1.3.10

1.5.3 Interpreting significant k-mers

For the final step we will work with only those k-mers which exceeded the significance threshold in the mixed model
analysis. We will filter these from the output using a simple awk command:

cat <(head -1 penicillin_kmers.txt) <(awk '$4<1.90E-08 {print $0}' penicillin_kmers.txt)␣
→˓> significant_kmers.txt

There are 5327 significant k-mers.

Mapping to a single reference

Let’s use bwa mem to map these to the reference provided:

phandango_mapper significant_kmers.txt Spn23F.fa Spn23F_kmers.plot

Read 5327 k-mers
Mapped 2425 k-mers

Not all the k-mers have been mapped, which is usually the case. Note there are 2459 mapping lines in the output, as
34 secondary mappings we included. It is a good idea to map to range of references to help with an interpretion for all
of the significant k-mers. The k-mer annotation step, described next, also helps cover all k-mers. Let’s look at the plot
file in phandango:

In this view we no longer see all of the Manhattan plot as we have filtered out the low p-value k-mers. There is generally
less noise due to LD/population structure when compared to our previous result above. There are peaks in the three

30 Chapter 1. Citations

http://jameshadfield.github.io/phandango/#/

pyseer Documentation, Release 1.3.10

pbp genes again, with the strongest results in pbp2x and pbp2b as before. Zooming in:

The whole pbp2x gene is covered by significant k-mers, whereas only a small part of pbp1a is hit. This could be due
to the fact that only some sites in pbp1a can be variable, only some of the variable sites affect penicllin resistance, or
due to the ability to map k-mers to this region.

Annotating k-mers

We can annotate these k-mers with the genes they are found in, or are near. To try and map every k-mer we can include a
number of different reference annotations, as well as all the draft annotations of the sequences the k-mers were counted
from. For the purposes of this tutorial we will demonstrate with a single type of each annotation, but this could be
expanded by adding all the annotated assemblies to the input.

We’ll start by creating a references.txt file listing the annotations we wish to use (see Annotating k-mers for more
information on how to construct this file):

Spn23F.fa Spn23F.gff ref
6952_7#3.fa 6952_7#3.gff draft

Now run the script. This will iterate down the list of annotations, annotating the k-mers which haven’t already been
mapped to a previous annotation (requires bedtools, bedops and the pybedtools package):

annotate_hits_pyseer significant_kmers.txt references.txt annotated_kmers.txt

Reference 1
(continues on next page)

1.5. GWAS tutorial 31

pyseer Documentation, Release 1.3.10

(continued from previous page)

5327 kmers remain
Draft reference 2
2902 kmers remain

Note: If this runs slowly you can split the significant_kmers.txt file into pieces to parallelise the process.

Note: By default annotate_hits_pyseer will only consider CDS features in the provided GFF files. If
you want to consider other feature types you can use the --feature-type option (e.g. --feature-type rRNA
--feature-type tRNA).

Annotations marked ref can partially match between k-mer and reference sequence, whereas those marked draft
require an exact match. In this case the single draft didn’t add any matches. The genes a k-mer is in, as well as the
nearest upstream and downstream are added to the output:

TTTTTTTCTACAATAAAATAGGCTCCATAATATCTATAGTGGATTTACCCACTACAAATATTATAGAACCCGTTTTATTATGGAAAGACTTATTGGACTT␣
→˓ 6.47E-02 2.08E-12 2.10E-09 7.97E-01 1.31E-01 2.
→˓41E-01 FM211187:252213-252312;FM211187.832;;FM211187.834
TTTTTTTATAGATTTCAGGATCAGCCAAATAGTAATCCG 8.42E-01 1.03E-36 2.99E-10 -
→˓4.38E-01 6.83E-02 2.53E-01 FM211187:723388-723417;FM211187.2367;;
→˓FM211187.2371
TTTTTTTATAGATTTCAGGATCAGCCAAATAGTAATCCGCCAGCTGGCGTT 8.39E-01 3.38E-35 ␣
→˓4.04E-09 -3.95E-01 6.62E-02 2.37E-01 FM211187:1614084-
→˓1614122;penA;penA;penA

The output format is contig:position;upstream;in;downstream. The first line shows the k-mer was mapped
to FM211187:252213-252312, the nearest gene downstream having ID FM211187.832 and upstream having ID
FM211187.834. The third line shows that k-mer overlaps penA – note when a gene= field is found this is used in
preference to the ID= field.

Finally, we can summarise these annotations to create a plot of significant genes. We will only use genes k-mers are
actually in, but if we wanted to we could also include up/downstream genes by using the --nearby option:

python scripts/summarise_annotations.py annotated_kmers.txt > gene_hits.txt

We’ll use ggplot2 in R to plot these results:

require(ggplot2)
require(ggrepel)
library(ggrepel)

gene_hits = read.table("gene_hits.txt", stringsAsFactors=FALSE, header=TRUE)

ggplot(gene_hits, aes(x=avg_beta, y=maxp, colour=avg_maf, size=hits, label=gene)) +
geom_point(alpha=0.5) +
geom_text_repel(aes(size=60), show.legend = FALSE, colour='black') +
scale_size("Number of k-mers", range=c(1,10)) +
scale_colour_gradient('Average MAF') +
theme_bw(base_size=14) +
ggtitle("Penicillin resistance") +
xlab("Average effect size") +

(continues on next page)

32 Chapter 1. Citations

pyseer Documentation, Release 1.3.10

(continued from previous page)

ylab("Maximum -log10(p-value)")

You can customise this however you wish (for example adding the customary italics on gene names); these commands
will produce a plot like this:

The main hits have high p-values and are common, and in this case are covered by many k-mers. In this case penA
(pbp2b) and penX (pbp2x) are the main hits. Other top genes recR and ddl are adjacent to the pbp genes and are in LD
with them, creating an artifical association.

The results with large effect sizes (see Effect sizes) and relatively low p-values also have low MAF, and are probably
false positives. This can be seen better by changing the axes:

1.5. GWAS tutorial 33

https://academic.oup.com/mbe/article/16/12/1687/2925385
https://academic.oup.com/mbe/article/16/12/1687/2925385

pyseer Documentation, Release 1.3.10

1.6 Prediction tutorial

This page describes how to fit whole genome models with --wg, and how they can be used to predict the phenotype
for new samples. This tutorial starts from the same dataset as the GWAS tutorial, which is described at the top of that
page.

Note: Presently only the elastic net is implemented, which is the method used in this tutorial. Future methods will
include random forests and best linear unbiased predictors (BLUPs).

• Fitting a whole-genome model

– Accounting for population structure

• Using the model to predict phenotype in new samples

– Generating consistent unitig calls

34 Chapter 1. Citations

pyseer Documentation, Release 1.3.10

1.6.1 Fitting a whole-genome model

The first step to performing prediction is to a train a model on genetic data with a known phenotype. The trained
models in pyseer can also be used for association purposes, as the individual variants associated with the phenotype
are reported.

Here we will try and find SNPs which can predict penicillin resistance in S. pneumoniae. It would also be possible to
use unitigs by changing --vcf to --kmers. We will use the same data as from the GWAS GWAS tutorial – instructions
on how to download this data can be found at the top of that page.

Variants are loaded, the model is fitted and saved. This can all be done in a single step:

pyseer --vcf snps.vcf.gz --phenotypes resistances.pheno --wg enet \
--save-vars output/ma_snps --save-model penicillin.lasso --cpu 4 --alpha 1 > selected.txt

Read 603 phenotypes
Detected binary phenotype
Reading all variants
198248variants [04:46, 691.24variants/s]
Saved enet variants as output/ma_snps.pkl
Applying correlation filtering
100%|| 89703/89703 [00:51<00:00, 1742.25variants/s]
Fitting elastic net to top 67277 variants
[status] Parallel glmnet cv with 4 cores
Best penalty (lambda) from cross-validation: 2.09E-02
Best model deviance from cross-validation: 0.405 ± 4.57E-02
Best R^2 from cross-validation: 0.822
Finding and printing selected variants
Saved enet model as penicillin.lasso.pkl
198248 loaded variants
130971 filtered variants
67277 tested variants
35 printed variants

Warning: You may see warnings about variants with no observations. In this case the VCF has many missing
calls causing this, which can be ignored. In other settings this often points to a mismatch between sample labels in
the variant and phenotype files.

selected.txt now contains the selected variants in a GWAS-like format:

variant af filter-pvalue lrt-pvalue beta notes
26_31771_C_T 3.48E-02 8.06E-02 1.10E-01
26_292628_G_A 3.78E-01 6.12E-94 9.92E-02
26_292653_T_C 6.63E-02 2.95E-16 9.56E-01 bad-chisq

To calculate an adjusted p-value you can add --distances as one would do for GWAS with the SEER fixed effects
model, or create a new variant file with just the selected variants, then run pyseer again.

Differences of this approach from the univariate GWAS approach covered in GWAS tutorial:

• --wg enet fits an elastic net to all variants with --n-folds cross-validation (default 10-fold).

• --save-vars saves the variants loaded by --vcf in an efficient sparse matrix format, which can be quickly
loaded for new model fitting.

1.6. Prediction tutorial 35

pyseer Documentation, Release 1.3.10

• --save-model saves the fitted model so it can be used for prediction.

• --cpu uses four cores efficiently during cross-valdation.

--alpha controls the mixing between ridge regression and lasso regression. Above we have used a value of 1, which
is lasso regression, selecting just a few variants. We can use a value closer to ridge regression if desired, which will
select more variants with smaller effect sizes:

pyseer --vcf snps.vcf.gz --phenotypes resistances.pheno --wg enet \
--load-vars output/ma_snps --save-model penicillin.001 --alpha 0.01 > selected.txt

Read 603 phenotypes
Detected binary phenotype
Reading all variants
Analysing 603 samples found in both phenotype and loaded npy
Applying correlation filtering
100%|| 89703/89703 [01:03<00:00, 1421.87variants/s]
Fitting elastic net to top 67275 variants
Best penalty (lambda) from cross-validation: 8.26E-01
Best model deviance from cross-validation: 0.402 ± 4.45E-02
Best R^2 from cross-validation: 0.815
Finding and printing selected variants
Saved enet model as penicillin.001.pkl
198248 loaded variants
130973 filtered variants
67275 tested variants
3523 printed variants

We can load the variants saved previously which saves a lot of time. The variant file is needed to print the selected
variants at the end – this is checked to ensure it is the same as the one originally provided.

Loading the variants can also be used when just a subset of --phenotypes is provided, which is useful for training-test
validation.

Accounting for population structure

As the model includes all genetic variants at once, covariance between them from population structure can implicitly be
included already. However, it is possible to include an explicit correction for population structure which may improve
prediction accuracy in new populations.

This correction is based on providing discrete definitions of lineages/strains. Prepare a file lineages.txt with the
following format:

7001_3#17 0
6999_7#9 0
7622_5#50 0
6999_1#2 0
7622_4#1 0
...
7622_2#40 59
7622_3#86 60
7622_5#61 61

Important: Rare lineages must be represented correctly, i.e. in their own cluster rather than being grouped in a ‘bin’.
One method we recommend to do this is PopPUNK. Connecting samples together which are below a certain distance

36 Chapter 1. Citations

https://poppunk.readthedocs.io/en/latest/

pyseer Documentation, Release 1.3.10

threshold will also work.

If you need to convert from PopPUNK output to this format with the tutorial, you can use the following code:

import csv, re
reader = csv.DictReader(open("poppunk/poppunk_clusters.csv"))
writer = csv.DictWriter(open("lineages.txt", "w"), delimiter=' ', fieldnames=reader.
→˓fieldnames)
for row in reader:

row['Taxon'] = re.match(r'.*/(.*)\.contigs_velvet\.fa', row['Taxon']).group(1)
writer.writerow(row)

Now add this to the analysis:

pyseer --vcf snps.vcf.gz --phenotypes resistances.pheno --wg enet \
--load-vars output/ma_snps --lineage-clusters lineages.txt --sequence-reweighting

Read 603 phenotypes
Detected binary phenotype
Reading all variants
Analysing 603 samples found in both phenotype and loaded npy
Applying correlation filtering
100%|| 89703/89703 [00:59<00:00, 1513.70variants/s]
Fitting elastic net to top 67275 variants
Fitting elastic net to top 67275 variants
Best penalty (lambda) from cross-validation: 1.17E+00
Best model deviance from cross-validation: 0.572 ± 8.76E-02
Best R^2 from cross-validation: 0.815
Predictions within each lineage
Lineage Size R2 TP TN FP FN
0 96 0.820 35 57 4 0
1 55 0.182 2 48 0 5
...
8 18 -0.200 0 15 0 3
9 18 1.000 0 18 0 0
Finding and printing selected variants
198248 loaded variants
130973 filtered variants
67275 tested variants
4357 printed variants

Adding --lineage-clusters has two effects. Cross-validation will be performed by leaving one strain out. This will
usually take longer as there are more strains than folds, but may help reduce the number of lineage effects included.
Also, training predition accuracy for each lineage will be reported, making it easier to see whether there are some parts
of the data where the model is performing better. For binary phenotypes 𝑅2 can be difficult to interpret, so true/false
positives/negatives are also reported.

Adding --sequence-reweighting has one further effect. Within each lineage, the weight 𝑤𝑖 given to each sample
in the loss function

min
𝑏0,𝑏

1

𝑁

𝑁∑︁
𝑖=1

𝑤𝑖𝑙(𝑦𝑖, 𝑏0 + 𝑏𝑇𝑥𝑖)
2 + 𝜆

[︀
(1− 𝛼)||𝑏||22/2 + 𝛼||𝑏||1

]︀

1.6. Prediction tutorial 37

pyseer Documentation, Release 1.3.10

is set by

1

𝑢𝑖
=

𝑁∑︁
𝑗=1

[𝑗 ∈ 𝐶(𝑖)]

𝑤𝑖 = 𝑢𝑖 ·
𝑁∑︀𝑁
𝑗=1 𝑢𝑗

where 𝐶(𝑥) is the lineage cluster of 𝑥.

This sets the weights as being inversely proportional to the size of the cluster, and rescales all weights to sum to 𝑁 .
Without this option 𝑤𝑖 = 1 ∀ 𝑖.

1.6.2 Using the model to predict phenotype in new samples

The elastic net models can be used to predict phenotypes in new samples. We will first split the samples into training
and test sets:

head -500 resistances.pheno > train.pheno
cat <(head -1 resistances.pheno) <(tail -104 resistances.pheno) > test.pheno
cut -f 1 test.pheno | sed '1d' > test.samples

Warning: This is a random split of the samples, unlikely to be equivalent to different sample collections made up
of different proportions of strains. Accuracy is likely overestimated, but within strain accuracies can be useful.

We will use lasso regression as fewer variants are selected, so if they were uncalled in the test set this should be less of
a problem (but is still an important concern). Fit a model to the training set:

pyseer --vcf snps.vcf.gz --phenotypes train.pheno --wg enet \
--load-vars output/ma_snps --alpha 1 --save-model test_lasso --cpu 4 \
--lineage-clusters lineages.txt --sequence-reweighting

Read 499 phenotypes
Detected binary phenotype
Reading all variants
Analysing 499 samples found in both phenotype and loaded npy
Applying correlation filtering
100%|| 89703/89703 [00:56<00:00, 1597.01variants/s]
Fitting elastic net to top 67277 variants
[status] Parallel glmnet cv with 4 cores
Best penalty (lambda) from cross-validation: 3.38E-02
Best model deviance from cross-validation: 0.605 ± 1.01E-01
Best R^2 from cross-validation: 0.788
Predictions within each lineage
Lineage Size R2 TP TN FP FN
0 74 0.753 24 46 4 0
1 41 0.219 2 35 0 4
10 12 1.000 0 12 0 0
11 9 1.000 8 1 0 0
12 8 1.000 8 0 0 0
13 11 1.000 11 0 0 0
14 9 1.000 3 6 0 0

(continues on next page)

38 Chapter 1. Citations

pyseer Documentation, Release 1.3.10

(continued from previous page)

15 9 1.000 0 9 0 0
16 10 1.000 0 10 0 0
17 7 -0.167 0 6 0 1
18 6 1.000 0 6 0 0
19 5 -0.250 0 4 0 1
2 35 1.000 0 35 0 0
20 3 1.000 3 0 0 0
21 6 -0.200 0 5 0 1
22 7 1.000 0 7 0 0
23 6 1.000 0 6 0 0
24 7 -0.167 0 6 0 1
25 7 1.000 0 7 0 0
26 6 -0.200 0 5 0 1
27 5 1.000 0 5 0 0
28 5 1.000 2 3 0 0
29 5 1.000 5 0 0 0
3 36 -0.059 34 0 2 0
30 3 1.000 0 3 0 0
31 4 -0.333 0 3 0 1
32 4 1.000 0 4 0 0
33 3 -0.500 0 2 0 1
34 3 1.000 3 0 0 0
35 3 1.000 0 3 0 0
36 3 1.000 0 3 0 0
37 3 1.000 3 0 0 0
38 1 1.000 0 1 0 0
39 1 1.000 0 1 0 0
4 24 -0.043 23 0 1 0
40 2 1.000 2 0 0 0
41 2 1.000 0 2 0 0
42 1 1.000 0 1 0 0
43 2 1.000 0 2 0 0
44 1 1.000 0 1 0 0
45 1 1.000 0 1 0 0
46 2 1.000 0 2 0 0
47 1 1.000 1 0 0 0
48 1 1.000 0 1 0 0
49 1 1.000 0 1 0 0
5 24 1.000 24 0 0 0
50 1 1.000 0 1 0 0
51 1 1.000 1 0 0 0
52 1 1.000 0 1 0 0
53 1 1.000 1 0 0 0
54 1 1.000 1 0 0 0
55 1 1.000 1 0 0 0
56 1 1.000 1 0 0 0
57 1 1.000 0 1 0 0
58 1 1.000 0 1 0 0
59 1 1.000 0 1 0 0
6 18 -0.059 0 17 0 1
7 18 -0.200 12 3 0 3
8 18 -0.200 0 15 0 3

(continues on next page)

1.6. Prediction tutorial 39

pyseer Documentation, Release 1.3.10

(continued from previous page)

9 16 1.000 0 16 0 0
Finding and printing selected variants
Saved enet model as test_lasso.pkl
198248 loaded variants
130971 filtered variants
67277 tested variants
32 printed variants

The prediction accuracy is pretty similar across lineages, which is good. As the test set is a similar makeup of lineages
hopefully prediction accuracy will be similar.

enet_predict is used to make the predictions:

enet_predict --vcf snps.vcf.gz --lineage-clusters lineages.txt --true-values test.pheno \
test_lasso.pkl test.samples > test_predictions.txt

Reading variants from input
198248variants [00:11, 17657.99variants/s]
Overall prediction accuracy
R2: 0.8668373879641486
tn: 69
fp: 2
fn: 1
tp: 32
Predictions within each lineage
Lineage Size R2 TP TN FP FN
0 22 1.000 11 11 0 0
1 14 -0.077 0 13 0 1
10 3 1.000 0 3 0 0
11 5 1.000 2 3 0 0
12 5 -0.250 4 0 1 0
13 1 1.000 1 0 0 0
14 2 1.000 1 1 0 0
15 2 1.000 0 2 0 0
17 2 1.000 0 2 0 0
18 2 1.000 0 2 0 0
19 4 1.000 0 4 0 0
2 11 1.000 0 11 0 0
20 4 -0.333 3 0 1 0
21 1 1.000 0 1 0 0
23 1 1.000 0 1 0 0
26 1 1.000 0 1 0 0
27 1 1.000 0 1 0 0
3 8 1.000 8 0 0 0
30 1 1.000 0 1 0 0
33 1 1.000 0 1 0 0
39 1 1.000 0 1 0 0
4 1 1.000 1 0 0 0
42 1 1.000 0 1 0 0
44 1 1.000 0 1 0 0
45 1 1.000 0 1 0 0
5 1 1.000 1 0 0 0
6 2 1.000 0 2 0 0

(continues on next page)

40 Chapter 1. Citations

pyseer Documentation, Release 1.3.10

(continued from previous page)

60 1 1.000 0 1 0 0
61 1 1.000 0 1 0 0
7 1 1.000 0 1 0 0
9 2 1.000 0 2 0 0

The required options are a variant file, in this case the same --vcf contains calls for the test samples, but this could be
a new file, as long as the variant labels match (non-trivial!). test_lasso.pkl is the saved model and test.samples
are the names of samples appearing in the variants file to produce predictions for.

Here, providing --true-values is needed to give the prediction accuracies. Providing --lineage-clusters in
addition gives the per lineage prediction accuracy. For the reasons noted above, the test accuracy is pretty similar to
the training set.

The predictions are in test_predictions.txt:

Sample Prediction Link Probability
7622_3#79 1.0 1.1723387708055686 0.7635674993396665
7622_3#80 1.0 2.828167499490956 0.9441790988402875
7622_3#81 1.0 2.2308130622857987 0.9029826106893201
7622_3#82 0.0 -0.7572524088945985 0.3192430949937001

For a binary phenotype:

• a 0/1 prediction at --threshold on the probability.

• Link is the value of the linear sum of the model betas, before entering the logit link function.

• Probability is a continuous prediction (after taking logit).

Generating consistent unitig calls

It has been mentioned many times above that it is necessary that variant calls match between the inputs of the training
and test data. This was ensured above as all variants were called together and merged into a single file. Generally this
may not be possible, especially if testing prediction accuracy in a new cohort. If a variant in the model is missing its
mean slope value will be used for all samples, which may significantly reduce accuracy.

One way around this issue is to use unitigs. However, sequences which are unitigs in the DBG of one population may
not be unitigs in the DBG of a different sample set, even if they are present. So simply running unitig-counter on
both training and test datasets will result in many missing calls.

You should instead use unitig-caller to make variant calls in the test population using the same unitigs definitions as in
the training population. Full usage and details are given in the README.md, but briefly:

gzip -d -c unitigs.txt.gz | cut -f 1 > queries.txt
unitig-caller --mode simple --strains strain_list.txt --unitigs queries.txt --output␣
→˓calls.txt

Will write a file of sequence elements for the samples in strain_list.txt to calls.txt, which is guaranteed to
overlap with the original training set calls, and can therefore be used with enet_predict.

1.6. Prediction tutorial 41

https://github.com/johnlees/unitig-caller

pyseer Documentation, Release 1.3.10

1.7 Multiprocessing

pyseer supports the use of multiple CPUs through the --cpu option. This sends batches of processed variants to a
core, which will fit the chosen model on all variants in the batch.

The constant --block-size controls the number of variants sent to each core. The higher this is set the more efficient
the use of CPUs will be (up to a limit, set by the time spent reading the variant input) at the expense of a roughly linear
increase in memory usage. The default is 1000, using which on 8 cores required around 1.5Gb of memory for a 1.4x
speedup with the mixed model. Increasing this to 30000 while using 4 cores gave a similar (1.5x) speedup, but needed
12Gb of memory.

Depending on your computing architecture, you may wish to split the input and run separate jobs. This will be more
efficient, but is less convenient. This can be done using GNU split:

split -d -n l/8 fsm_kmers.txt fsm_out

This would split the input k-mers into 8 separate files.

1.7.1 Prediction

The --wg enet mode also supports CPUs, but can be very memory-hungry (memory use scales linearly with number
of cores). For large datasets, if you are running out of memory, you may wish to try with just a single core.

1.8 Reference documentation

1.8.1 input.py

Functions to read data into pyseer and iterate over instances

pyseer.input.file_hash(filename)
Calculates the hash of an entire file on disk

Parameters
filename (str) – Location of file on disk

Returns

hash (str)
SHA256 checksum

pyseer.input.hash_pattern(k)
Calculates the hash of a presence/absence vector

Parameters
k (numpy.array) – Variant presence/absence binary vector (n, 1)

Returns

hash (byte)
Hashed pattern

pyseer.input.iter_variants(p, m, cov, var_type, burden, burden_regions, infile, all_strains, sample_order,
lineage_effects, lineage_clusters, min_af , max_af , max_missing, filter_pvalue,
lrt_pvalue, null_fit, firth_null, uncompressed, continuous)

Make an iterable to pass single variants to fixed effects regression

42 Chapter 1. Citations

pyseer Documentation, Release 1.3.10

Parameters

• p (pandas.DataFrame) – Phenotype vector (n, 1)

• m (numpy.array) – Population structure matrix (n, k)

• cov (pandas.DataFrame) – Covariates matrix (n, m)

• var_type (str) – Variants type (one of: kmers, vcf or Rtab)

• burden (bool) – Whether to slice a vcf file by burden regions

• burden_regions (collections.deque) – Burden regions to slice the vcf with

• infile (opened file) – Handle to opened variant file

• all_strains (set-like) – All sample labels that should be present

• sample_order – Sampes order to interpret each Rtab line

• lineage_effects (bool) – Whether to fit lineage effects

• clusters (lineage) – Lineage clusters indexes

• min_af (float) – Minimum allele frequency (inclusive)

• max_af (float) – maximum allele frequency (inclusive)

• max_missing (float) – maximum missing frequency

• filter_pvalue (float) – Pre-filtering p-value threshold

• lrt_pvalue (float) – Filtering p-value threshold

• null_fit (float or statsmodels.regression.linear_model.
RegressionResultsWrapper) – Null-fit likelihood (binary) or model (continuous)

• firth_null (float) – Firth regression likelihood

• uncompressed (bool) – Whether the kmers file is uncompressed

• continuous (bool) – Whether the phenotype is continuous or not

Returns

var_name (str)
Variant name

v (numpy.array)
Phenotypes vector (n, 1)

k (numpy.array)
Variant presence/absence vector (n, 1)

m (numpy.array)
Population structure matrix (n, k)

c (numpy.array)
Covariates matrix (n, m)

af (float)
Allele frequency

pattern (bytes)
Variant hash

lineage_effects (bool)
Whether to fit lineage effects

1.8. Reference documentation 43

pyseer Documentation, Release 1.3.10

lineage clusters (list)
Lineage clusters indexes

filter_pvalue (float)
Pre-filtering p-value threshold

lrt_pvalue (float)
Filtering p-value threshold

null_fit (float or statsmodels.regression.linear_model.RegressionResultsWrapper)
Null-fit likelihood (binary) or model (continuous)

firth_null (float)
Firth regression likelihood

kstrains (iterable)
Sample labels with the variant

nkstrains (iterable)
Sample labels without the variant

continuous (bool)
Whether the phenotype is continuous or not

pyseer.input.iter_variants_lmm(variant_iter, lmm, h2, lineage, lineage_clusters, covariates, continuous,
filter_pvalue, lrt_pvalue)

Make an iterable to pass single variants to fixed effects regression

pyseer.input.load_burden(infile, burden_regions)
Load burden regions for VCF analysis

Parameters

• infile (str) – Input file for burden regions

• burden_regions (list) – List to be filled in-place

pyseer.input.load_covariates(infile, covariates, p)
Load and encode a covariates matrix

Parameters

• infile (str) – Input file for the covariates matrix

• covariates (iterable or None) – List of string indicating which columns to use and
their interpretation. Example: 2q indicates that the second column from the file is a quanti-
tative variable, 2 indicates that that same column is categorical. If None, the matrix is loaded
but nothing is done with it.

• p (pandas.Series) – Phenotypes vector (n, 1)

Returns

cov (pandas.DataFrame)
Covariance matrix (n, m)

pyseer.input.load_lineage(infile, p)
Load custom lineage clusters definitions

Parameters

• infile (str) – Input file for lineage clusters

• p (pandas.Series) – Phenotypes vector (n, 1)

44 Chapter 1. Citations

pyseer Documentation, Release 1.3.10

Returns

result (tuple of (numpy.array, list))
Lineage binary matrix and cluster labels

pyseer.input.load_phenotypes(infile, column)
Load phenotypes vector

Parameters

• infile (str) – Matrix input file

• column (str or None) – Phenotype column name or None to pick the last column

Returns

p (pandas.Series)
Phenotype vector (n, 1)

pyseer.input.load_structure(infile, p, max_dimensions, mds_type='classic', n_cpus=1, seed=None)
Load population structure and apply multidimensional scaling

Parameters

• infile (str) – Population structure (distance matrix) input file

• p (pandas.Series) – Phenotype vector (n, 1)

• max_dimensions (int) – Maximum dimensions to consider when applying metric or non-
metric MDS

• mds_type (str) – MDS algorithm to apply. One of classic, metric or non-metric. Any other
input will trigger the metric MDS

• n_cpus (int) – Number of CPUs to be used for the metric or non-metric MDS

• seed (int or None) – Random seed for metric or non-metric MDS, None if not required

Returns

m (pandas.DataFrame)
Population structure after MDS (n, m)

pyseer.input.load_var_block(var_type, p, burden, burden_regions, infile, all_strains, sample_order, min_af ,
max_af , max_missing, uncompressed, block_size)

Make in iterable to load blocks of variants for LMM

Parameters

• var_type (str) – Variants type (one of: kmers, vcf or Rtab)

• p (pandas.DataFrame) – Phenotype vector (n, 1)

• burden (bool) – Whether to slice a vcf file by burden regions

• burden_regions (collections.deque) – Burden regions to slice the vcf with

• infile (opened file) – Handle to opened variant file

• all_strains (set-like) – All sample labels that should be present

• sample_order – Sampes order to interpret each Rtab line

• min_af (float) – Minimum allele frequency (inclusive)

• max_af (float) – maximum allele frequency (inclusive)

• max_missing (float) – maximum missing frequency

1.8. Reference documentation 45

pyseer Documentation, Release 1.3.10

• uncompressed (bool) – Whether the kmers file is uncompressed

• block_size (int) – How many variants to be loaded at once

Returns

variants (iterable)
A collection of pyseer.classes.LMM objects describing the loaded variants (n,)

variant_mat (numpy.array)
Variant bloack presence/absence matrix (n, block_size)

eof (bool)
Whether we are at the end of the file

pyseer.input.open_variant_file(var_type, var_file, burden_file, burden_regions, uncompressed)
Open a variant file for use as an iterable

Parameters

• var_type (str) – Type of variants file (kmers, vcf, Rtab)

• var_file (str) – Location of file

• burden_file (str) – File containing regions to group burden tests

• burden_regions (list) – List of burden regions to be filled in-place

• uncompressed (bool) – True if kmer file is not gzipped

pyseer.input.read_variant(infile, p, var_type, burden, burden_regions, uncompressed, all_strains,
sample_order, keep_list=None, noparse=False)

Read input line and parse depending on input file type

Return a variant name and pres/abs vector

Parameters

• infile (opened file) – Handle to opened variant file

• p (pandas.Series) – Phenotypes vector (n, 1)

• var_type (str) – Variants type (one of: kmers, vcf or Rtab)

• burden (bool) – Whether to slice a vcf file by burden regions

• burden_regions (collections.deque) – Burden regions to slice the vcf with

• uncompressed (bool) – Whether the kmers file is uncompressed

• all_strains (set-like) – All sample labels that should be present

• sample_order – Samples order to interpret each Rtab line

• keep_list (dict) – Variant names to properly read, any other will return None

(default = None)

• noparse (bool) – Set True to skip line without parsing and return None, irrespective of
presence in skip_list

(default = False)

Returns

eof (bool)
Whether we are at the end of the file

46 Chapter 1. Citations

pyseer Documentation, Release 1.3.10

k (numpy.array)
Variant presence/absence vector

var_name (str)
Variant name

kstrains (list)
Samples in which the variant is present

nkstrains (list)
Samples in which the variant is absent

af (float)
Allele frequency

missing (float)
Missing frequency

pyseer.input.read_vcf_var(variant, d, keep_list=None)
Parses vcf variants from pysam

Returns None if filtered variant. Mutates passed dictionary d

Parameters

• variant (pysam.libcbcf.VariantRecord) – Variant to be parsed

• d (dict) – Dictionary to be populated in-place

• keep_list (list) – List of variants to read

1.8.2 model.py

Original SEER model (fixed effects) implementations

pyseer.model.firth_likelihood(beta, logit)
Convenience function to calculate likelihood of Firth regression

Parameters

• beta (numpy.array) – (n, 1)

• logit (statsmodels.discrete.discrete_model.Logit) – Logistic model

Returns

likelihood (float)
Firth likelihood

pyseer.model.fit_firth(logit_model, start_vec, X, y, step_limit=1000, convergence_limit=0.0001)
Do firth regression

Parameters

• logit (statsmodels.discrete.discrete_model.Logit) – Logistic model

• start_vec (numpy.array) – Pre-initialized vector to speed-up convergence (n, 1)

• X (numpy.array) – (n, m)

• y (numpy.array) – (n,)

• step_limit (int) – Maximum number of iterations

• convergence_limit (float) – Convergence tolerance

1.8. Reference documentation 47

pyseer Documentation, Release 1.3.10

Returns

intercept (float)
Intercept

kbeta (float)
Variant beta

beta (iterable)
Covariates betas (n-2)

bse (float)
Beta std-err

fitll (float or None)
Likelihood of fit or None if could not fit

pyseer.model.fit_lineage_effect(lin, c, k)
Fits the model k ~ Wa using binomial error with logit link. W are the lineages (either a projection of samples, or
cluster indicators) and covariates. Returns the index of the most significant lineage

Parameters

• lin (numpy.array) – Population structure matrix or lineage association binary matrix (n,
k)

• c (numpy.array) – Covariants matrix (n, j)

• k (numpy.array) – Variant presence-absence vector (n, 1)

Returns

max_lineage (int or None)
Index of the most significant lineage or None is could not fit

pyseer.model.fit_null(p, m, cov, continuous, firth=False)
Fit the null model i.e. regression without k-mer

y ~ Wa

Returns log-likelihood

Parameters

• p (numpy.array) – Phenotypes vector (n, 1)

• m (numpy.array) – Population structure matrix (n, k)

• cov (pandas.DataFrame) – Covariants dataframe (n, j)

• continous (bool) – Whether phenotypes are continuous or binary

• firth (bool) – For binary phenotypes whether to use firth regression

Returns

null_res (statsmodels.regression.linear_model.RegressionResultsWrapper or float or
None)

Fitted model or log-likelihood (if firth) or None if could not fit

pyseer.model.fixed_effects_regression(variant, p, k, m, c, af , pattern, lineage_effects, lin, pret, lrtt,
null_res, null_firth, kstrains, nkstrains, continuous)

Fits the model y ~ Xb + Wa using either binomial error with logit link (binary traits) or Gaussian error (continuous
traits)

• y is the phenotype

48 Chapter 1. Citations

pyseer Documentation, Release 1.3.10

• X is the variant presence/absence (fixed effects)

• W are covariate fixed effects, including population structure

• a and b are slopes to be fitted

Parameters

• variant (str) – Variant identifier

• p (numpy.array) – Phenotype vector (binary or continuous) (n, 1)

• k (numpy.array) – Variant presence/absence vector (n, 1)

• m (numpy.array) – Population structure matrix (n, m)

• c (numpy.array) – Covariants matrix (n, j)

• af (float) – Allele frequency

• pattern (str) – Variant hashed pattern

• lineage_effects (bool) – Whether to fit lineages or not

• lin (numpy.array) – Lineages matrix (n, k)

• pret (float) – Pre-filtering p-value threshold

• lrtt (float) – Post-fitting p-value threshold

• null_res (float or statsmodels.regression.linear_model.
RegressionResultsWrapper) – Null-fit likelihood (binary) or model (continuous)

• null_firth (float) – Firth regression likelihood

• kstrains (iterable) – Sample labels with the variant

• nkstrains (iterable) – Sample labels without the variant

• continuous (bool) – Whether the phenotype is continuous or not

Returns

result (pyseer.classes.Seer)
Results container

pyseer.model.pre_filtering(p, k, continuous)
Calculate a naive p-value from a chisq test (binary phenotype) or a t-test (continuous phenotype) which is not
adjusted for population structure

Parameters

• p (numpy.array) – Phenotypes vector (n, 1)

• k (numpy.array) – Variant presence-absence vector (n, 1)

• continous (bool) – Whether phenotypes are continuous or binary

Returns

prep (float)
Naive p-value

bad_chisq (boolean)
Whether the chisq test had small values in the contingency table

1.8. Reference documentation 49

pyseer Documentation, Release 1.3.10

1.8.3 lmm.py

LMM interface implementations

pyseer.lmm.fit_lmm(lmm, h2, variants, variant_mat, lineage_effects, lineage_clusters, covariates, continuous,
filter_pvalue, lrt_pvalue)

Fits LMM and returns LMM tuples for printing

Parameters

• lmm (pyseer.fastlmm.lmm_cov.LMM) – Initialised LMM model

• h2 (float) – Trait’s variance explained by covariates

• variants (iterable) – Tuples with variant object, phenotype vector and variant vector
(pyseer.classes.LMM, numpy.array, numpy.array)

• variant_mat (numpy.array) – Variants presence absence matrix (n, k)

• lineage_effects (bool) – Whether to fit lineage effects

• lineage_clusters (numpy.array) – Population structure matrix or lineage association
binary matrix (n, k)

• covariates (numpy.array) – Covariates matrix (n, m)

• continuous (bool) – Whether the phenotype is continuous

• filter_pvalue (float) – Pre-filtering p-value threshold

• lrt_pvalue (float) – Post-fitting p-value threshold

Returns

all_variants (iterable)
All variant objects fitted or filtered

pyseer.lmm.fit_lmm_block(lmm, h2, variant_block)
Actually fits the LMM to numpy variant array see map/reduce section of _internal_single in
fastlmm.association.single_snp

Parameters

• lmm (pyseer.fastlmm.lmm_cov.LMM) – Initialised LMM model

• h2 (float) – Trait’s variance explained by covariates

• variant_block (numpy.array) – Variants presence absence matrix (n, k)

Returns

lmm_results (dict)
LMM results for this variants block

pyseer.lmm.initialise_lmm(p, cov, K_in, lmm_cache_in=None, lmm_cache_out=None,
lineage_samples=None)

Initialises LMM using the similarity matrix see _internal_single in fastlmm.association.single_snp

Parameters

• p (pandas.Series) – Phenotypes vector (n, 1)

• cov (pandas.DataFrame) – Covariance matrix (n, m)

• K_in (str) – Similarity matrix filename

50 Chapter 1. Citations

pyseer Documentation, Release 1.3.10

• lmm_chache_in (str or None) – Filename for an input LMM cache, None if it has to be
computed

• lmm_chache_out (str or None) – Filename to save the LMM cache, None otherwise.

• lineage_samples (list or None) – Sample names used for lineage (must match K_in)

Returns

p (pandas.Series)
Phenotype vector with the samples present in the similarity matrix

lmm (pyseer.fastlmm.lmm_cov.LMM)
Initialised LMM model

h2 (float)
Trait’s variance explained by covariates

1.8.4 utils.py

Utilities

pyseer.utils.format_output(item, lineage_dict=None, model='seer', print_samples=False)
Format results for a variant for stdout printing

Parameters

• item (pyseer.classes.Seer or pyseer.classes.LMM) – Variant results container

• lineage_dict (list) – Lineage labels

• model (str) – The model used

• print_samples (bool) – Whether to add the samples list to the putput

Returns

out (str)
Tab-delimited string to be printed

pyseer.utils.set_env(**environ)
Temporarily set the process environment variables.

>>> with set_env(PLUGINS_DIR=u'test/plugins'):
... "PLUGINS_DIR" in os.environ
True

>>> "PLUGINS_DIR" in os.environ
False

1.8. Reference documentation 51

pyseer Documentation, Release 1.3.10

1.8.5 cmdscale.py

Function to perform classical MDS

pyseer.cmdscale.cmdscale(D)

Classical multidimensional scaling (MDS)

Parameters
D (numpy.array) – Symmetric distance matrix (n, n)

Returns

Y (numpy.array)
Configuration matrix (n, p). Each column represents a dimension. Only the p dimensions
corresponding to positive eigenvalues of B are returned. Note that each dimension is only
determined up to an overall sign, corresponding to a reflection.

e (numpy.array)
Eigenvalues of B (n, 1)

1.8.6 enet.py

Elastic net model implementations

pyseer.enet.correlation_filter(p, all_vars, quantile_filter=0.25)
Calculates correlations between phenotype and variants, giving those that are above the specified quantile

Parameters

• p (pandas.DataFrame) – Phenotype vector (n, 1)

• all_vars (scipy.sparse.csr_matrix) – Narrow sparse matrix representation of all
variants to fit to (rows = variants, columns = samples)

• quantile_filter (float) – The quantile to discard at e.g. 0.25, retain top 75%

[default = 0.25]

Returns

cor_filter (numpy.array)
The indices of variants passing the filter

pyseer.enet.enet_predict(enet_fit, variants, continuous, responses=None)
Use a fitted elastic net model to make predictions about new observations. Returns accuracy if true responses
known

Parameters

• enet_fit (cvglmnet) – An elastic net model fitted using cvglmnet or similar

• variants (scipy.sparse.csc_matrix) – Wide sparse matrix representation of all vari-
ants to predict with (rows = samples, columns = variants)

• continuous (bool) – True if a continuous phenotype, False if a binary phenotype

• responses (np.array) – True phenotypes to calculate R^2 with

[default = None]

Returns

52 Chapter 1. Citations

pyseer Documentation, Release 1.3.10

preds (numpy.array)
Predicted phenotype for each input sample in variants

R2 (float)
Variance explained by model (or None if true labels not provided).

pyseer.enet.find_enet_selected(enet_betas, var_indices, p, c, var_type, fit_seer, burden, burden_regions,
infile, all_strains, sample_order, continuous, find_lineage, lin,
uncompressed)

Read through the variant input file again, yielding just those variants which had a non-zero slope for printing

Parameters

• enet_betas (numpy.array) – Fitted slopes of intercept, covariants and variants from elas-
tic net

• var_indices (list) – The 0-indexed locations (in the original file) of variants represented
in enet_betas

• p (pandas.DataFrame) – Phenotype vector (n, 1)

• c (numpy.array) – Covariate matrix (n, j)

• var_type (str) – Variants type (one of: kmers, vcf or Rtab)

• (tuple (fit_seer) – m, null_model, null_firth) Distance projection and null models re-
quired to fit fixed effect regression

• burden (bool) – Whether to slice a vcf file by burden regions

• burden_regions (collections.deque) – Burden regions to slice the vcf with

• infile (opened file) – Handle to opened variant file

• all_strains (set-like) – All sample labels that should be present

• sample_order – Sample order to interpret each Rtab line

• continuous (bool) – Is phenotype/fit continuous?

• lineage_effects (bool) – Whether to fit lineages or not

• lin (numpy.array) – Lineages matrix (n, k)

• uncompressed (bool) – Whether the kmers file is uncompressed

Returns

variant (var_obj.Enet)
Iterable of processed variants for printing

pyseer.enet.fit_enet(p, variants, covariates, weights, continuous, alpha, lineage_dict=None, fold_ids=None,
n_folds=10, n_cpus=1)

Fit an elastic net model to a set of variants. Prints information about model fit and prediction quality to STDERR

Parameters

• p (pandas.DataFrame) – Phenotype vector (n, 1)

• variants (scipy.sparse.csc_matrix) – Wide sparse matrix representation of all vari-
ants to fit to (rows = samples, columns = variants)

• covariates (pandas.DataFrame) – Covariate matrix (n, j)

• weights (np.array) – Vector of sample weights (n, 1)

• continuous (bool) – If True fit a Gaussian error model, otherwise Bionomial error

1.8. Reference documentation 53

pyseer Documentation, Release 1.3.10

• alpha (float) – Between 0-1, sets the mix between ridge regression and lasso regression

• lineage_dict (list) – Names of lineages, indices corrsponding to fold_ids

[default = None]

• fold_ids (list) – Index of fold assignment for cross-validation, from 0 to 1-n_folds

[default = None]

• n_folds (int) – Number of folds in cross-validation

[default = 10]

• n_cpus (int) – Number of processes to use in cross-validation Set to -1 to use all available

[default = 1]

Returns

betas (numpy.array)
The fitted betas (slopes) for each variant

pyseer.enet.load_all_vars(var_type, p, burden, burden_regions, infile, all_strains, sample_order, min_af ,
max_af , max_missing, uncompressed)

Load all variants in the input file into a sparse matrix representation

Parameters

• var_type (str) – Variants type (one of: kmers, vcf or Rtab)

• p (pandas.DataFrame) – Phenotype vector (n, 1)

• burden (bool) – Whether to slice a vcf file by burden regions

• burden_regions (collections.deque) – Burden regions to slice the vcf with

• infile (opened file) – Handle to opened variant file

• all_strains (set-like) – All sample labels that should be present

• sample_order – Sampes order to interpret each Rtab line

• min_af (float) – Minimum allele frequency (inclusive)

• max_af (float) – maximum allele frequency (inclusive)

• max_missing (float) – maximum missing frequency

• uncompressed (bool) – Whether the kmers file is uncompressed

Returns

variants (scipy.sparse.csr_matrix)
A sparse matrix representation of all variants in the input

selected_vars (list)
0-Indices of variants in the input file in variants (which passed AF filtering)

var_idx (int)
The number of read variants (number of rows of variants)

pyseer.enet.write_lineage_predictions(true_values, predictions, fold_ids, lineage_dict, continuous,
stderr_print=True)

Writes prediction ability stratified by lineage to stderr

Parameters

54 Chapter 1. Citations

pyseer Documentation, Release 1.3.10

• true_values (np.array) – Observed values of phenotype

• predictions (np.array) – Predicted phenotype values

• lineage_dict (list) – Names of lineages, indices corrsponding to fold_ids

• fold_ids (list) – Index of fold assignment for cross-validation, from 0 to 1-n_folds

• continuous (bool) – True if a continuous phenotype, False if a binary phenotype

• stderr_print (bool) – Print output to stderr

[default = True]

Returns

R2_vals (list)
R2 values for each fold

confusion (list)
Tuple of tn, fp, fn, tp for each fold

1.8. Reference documentation 55

pyseer Documentation, Release 1.3.10

56 Chapter 1. Citations

CHAPTER

TWO

INDEX:

• genindex

• search

57

pyseer Documentation, Release 1.3.10

58 Chapter 2. Index:

PYTHON MODULE INDEX

p
pyseer.cmdscale, 52
pyseer.enet, 52
pyseer.input, 42
pyseer.lmm, 50
pyseer.model, 47
pyseer.utils, 51

59

pyseer Documentation, Release 1.3.10

60 Python Module Index

INDEX

C
cmdscale() (in module pyseer.cmdscale), 52
correlation_filter() (in module pyseer.enet), 52

E
enet_predict() (in module pyseer.enet), 52

F
file_hash() (in module pyseer.input), 42
find_enet_selected() (in module pyseer.enet), 53
firth_likelihood() (in module pyseer.model), 47
fit_enet() (in module pyseer.enet), 53
fit_firth() (in module pyseer.model), 47
fit_lineage_effect() (in module pyseer.model), 48
fit_lmm() (in module pyseer.lmm), 50
fit_lmm_block() (in module pyseer.lmm), 50
fit_null() (in module pyseer.model), 48
fixed_effects_regression() (in module py-

seer.model), 48
format_output() (in module pyseer.utils), 51

H
hash_pattern() (in module pyseer.input), 42

I
initialise_lmm() (in module pyseer.lmm), 50
iter_variants() (in module pyseer.input), 42
iter_variants_lmm() (in module pyseer.input), 44

L
load_all_vars() (in module pyseer.enet), 54
load_burden() (in module pyseer.input), 44
load_covariates() (in module pyseer.input), 44
load_lineage() (in module pyseer.input), 44
load_phenotypes() (in module pyseer.input), 45
load_structure() (in module pyseer.input), 45
load_var_block() (in module pyseer.input), 45

M
module

pyseer.cmdscale, 52

pyseer.enet, 52
pyseer.input, 42
pyseer.lmm, 50
pyseer.model, 47
pyseer.utils, 51

O
open_variant_file() (in module pyseer.input), 46

P
pre_filtering() (in module pyseer.model), 49
pyseer.cmdscale

module, 52
pyseer.enet

module, 52
pyseer.input

module, 42
pyseer.lmm

module, 50
pyseer.model

module, 47
pyseer.utils

module, 51

R
read_variant() (in module pyseer.input), 46
read_vcf_var() (in module pyseer.input), 47

S
set_env() (in module pyseer.utils), 51

W
write_lineage_predictions() (in module py-

seer.enet), 54

61

	Citations
	Installation
	Prerequisites
	Test installation
	Other software

	Option reference
	Best practices
	Doing a genome-wide association study?
	Trying to predict a phenotype from genetics?
	Trying to calculate heritability?

	Usage
	Input
	Phenotype and covariates
	k-mers
	unitigs
	SNPs and INDELs
	Genes and intergenic regions, or any other variant type
	Rare variants
	Filtering

	Population structure
	mash
	Phylogeny based
	Genotype matrix
	No population structure correction

	Association models
	Fixed effects (SEER)
	Mixed model (FaST-LMM)
	Whole genome models (elastic net)
	Prediction with the elastic net

	Lineage effects (bugwas)

	Output
	Notes field
	Number of unique patterns
	Effect sizes

	Processing k-mer output
	Mapping to references (phandango)
	Annotating k-mers

	Processing unitig output

	GWAS tutorial
	SNP and COG association with fixed effects model
	K-mer association with mixed effects model
	Interpreting significant k-mers
	Mapping to a single reference
	Annotating k-mers

	Prediction tutorial
	Fitting a whole-genome model
	Accounting for population structure

	Using the model to predict phenotype in new samples
	Generating consistent unitig calls

	Multiprocessing
	Prediction

	Reference documentation
	input.py
	model.py
	lmm.py
	utils.py
	cmdscale.py
	enet.py

	Index:
	Python Module Index
	Index

